• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication
Television screen with static noise caused by bad signal reception

Resistor Noise Explained

24.8.2022

Skeleton SuperBattery to Electrify Refuse Vehicles

5.5.2023

IQD Würth Elektronik Extends Temperature Range of Crystals

4.5.2023

Littelfuse Increase Voltage Ratings of its SMD Resettable PPTCs Circuit Protection

4.5.2023

Knowles Milli-Cap Ultra Broadband Capacitors Suits up to 50GHz Applications 

4.5.2023

Fast 25kW SiC EV Charger Design; OnSemi and Würth Elektronik Webinar

4.5.2023

Borealis Launches Stelora™ High-Heat-Resistant Capacitor Polymer Film Dielectric

3.5.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Skeleton SuperBattery to Electrify Refuse Vehicles

    IQD Würth Elektronik Extends Temperature Range of Crystals

    Littelfuse Increase Voltage Ratings of its SMD Resettable PPTCs Circuit Protection

    Knowles Milli-Cap Ultra Broadband Capacitors Suits up to 50GHz Applications 

    Fast 25kW SiC EV Charger Design; OnSemi and Würth Elektronik Webinar

    Borealis Launches Stelora™ High-Heat-Resistant Capacitor Polymer Film Dielectric

    Magnetics Announced New XFlux Ultra Magnetic Powder Cores

    Bourns Unveils Automotive BMS Signal Transformer

    April 2023 ECIA NA Electronic Components Sales Sentiment Predicts Improvement in May

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Fast 25kW SiC EV Charger Design; OnSemi and Würth Elektronik Webinar

    PFC Inductor Magnetic Design Considerations; Frenetic Webinar

    Introduction to Capacitor Technologies; WE Webinar

    Self-Adjusting and Economical Switched Capacitor Balancer for Serially Connected Storage-Cells

    How to Design EMC Efficient Power Converter; WE Webinar

    Selecting Capacitors for High Power Buck-Booster Converters

    How to use Off-the-Shelf Transformers in Switching Power Supplies

    Simple Capacitors Pre-Charger Based on Unique ‘Floating Integrator’

    Practical LLC Transformer Design Methodology

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Skeleton SuperBattery to Electrify Refuse Vehicles

    IQD Würth Elektronik Extends Temperature Range of Crystals

    Littelfuse Increase Voltage Ratings of its SMD Resettable PPTCs Circuit Protection

    Knowles Milli-Cap Ultra Broadband Capacitors Suits up to 50GHz Applications 

    Fast 25kW SiC EV Charger Design; OnSemi and Würth Elektronik Webinar

    Borealis Launches Stelora™ High-Heat-Resistant Capacitor Polymer Film Dielectric

    Magnetics Announced New XFlux Ultra Magnetic Powder Cores

    Bourns Unveils Automotive BMS Signal Transformer

    April 2023 ECIA NA Electronic Components Sales Sentiment Predicts Improvement in May

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Fast 25kW SiC EV Charger Design; OnSemi and Würth Elektronik Webinar

    PFC Inductor Magnetic Design Considerations; Frenetic Webinar

    Introduction to Capacitor Technologies; WE Webinar

    Self-Adjusting and Economical Switched Capacitor Balancer for Serially Connected Storage-Cells

    How to Design EMC Efficient Power Converter; WE Webinar

    Selecting Capacitors for High Power Buck-Booster Converters

    How to use Off-the-Shelf Transformers in Switching Power Supplies

    Simple Capacitors Pre-Charger Based on Unique ‘Floating Integrator’

    Practical LLC Transformer Design Methodology

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Resistor Noise Explained

24.8.2022
Reading Time: 5 mins read
0 0
Television screen with static noise caused by bad signal reception

Television screen with static noise caused by bad signal reception

0
SHARES
82
VIEWS

Source: EDN article

Hugo Coolens in its EDN article explains in depth resistor noise.

RelatedPosts

Skeleton SuperBattery to Electrify Refuse Vehicles

IQD Würth Elektronik Extends Temperature Range of Crystals

Littelfuse Increase Voltage Ratings of its SMD Resettable PPTCs Circuit Protection

Introductory courses on noise in electronic circuits often start by stating the following formula for the open-circuit noise voltage of a resistor:

In formula 1, k = 1.3806 x 10-23 [J/K] is the Boltzmann constant, T is the temperature in Kelvin and R is the resistance value in Ω.


Figure 1 Interpretation of formula EN,RMS = √4kTR·BW

Let’s clarify formula 1 a bit further by looking at Figure 1. EN,RMS is the voltage an idealized RMS-measuring voltmeter would indicate if it had the following characteristics:

  • An input impedance equal to infinity
  • No internal noise generation
  • An amplitude characteristic as shown in Figure 1, with a bandwidth in Hz equal to: BW = fh – fl

You’ll probably argue that’s a lot of conditions; true, but let’s make things a bit more realistic. First of all, the voltage we would measure would be small, so we sure would have to bring in some amplification, say a voltage gain A instead of one. Our meter would then indicate:

Further, a brick wall characteristic is impossible to realize as it can be proven that such a filter is non-causal. So let’s replace it with a realizable filter characteristic as in Figure 2.


Figure 2 Interpretation of formula EN,RMS for a realizable filter

If we only consider an infinitesimal small bandwidth df, which is the same as applying a brickwall filter with bandwidth df and amplification |H(jω)|, Formula 3 is transformed in:

The quantity

is called the noise equivalent bandwidth (NEB)1. √4kTR is named the noise voltage density, let’s represent it by a stylish ε to avoid confusion with the voltage E itself. So we also could write:

Now, let’s have a closer look at Equation 6. What would happen if we used a filter characteristic with an infinite bandwidth? You might think you could expect an infinite voltage across the terminals of your resistor. This, of course can’t be true in reality. What is wrong here? An explanation finds it roots in quantum phenomena. Formula εN,RMS = √4kTR is not the complete formula, it is only an approximation, indeed the exact formula is:

In Formula 7, h = 6.6261 · 10-34 [Js] is the Planck constant. The factor p(f) goes to zero for f going to +∞, this will keep the value of εN,RMS finite. Let’s check this for a system with an infinite bandwidth:

Fortunately, the integral in the previous line, called the Bose integral, has a known neat solution

This shows that for a resistance of 1MΩ and a temperature of 300K, the voltage could never become greater than 0.41V. You can also check that the percentual difference in EN,RMS calculated with both formulas for εN,RMS will be at most 1% as long as you stay below 500GHz. Of course you could argue that such frequencies are unrealistic in the world of electronics, but don’t forget these days circuits oscillating at frequencies higher than 1THz have already been built2. produce?

Out of curiosity I checked a few Spice-based simulators –I checked four of them3– to see how well they model noise at these frequencies. Even though they simulate carelessly at extreme frequencies like 10THz, I noticed none of them uses the correct resistor noise model at these frequencies.

Even though this explanation is correct, more practical inclined persons might stay a bit suspicious of explanations stemming from quantum phenomena. Who could blame them as even the late great Richard Feynman said “If you think you understand quantum mechanics then you don’t understand quantum mechanics.” So even though formula 7 explains why you’ll never will get an infinite voltage over your resistor terminals, in practical electronic circuits two other factors will determine the noise contributions of your resistor: a resistor will always have some parasitic capacitance and/or there also will be a bandwidth limitation. The matter of parasitic capacitance is most often dealt with in a standard derivation of the RMS value of the voltage across a resistor in parallel with a capacitor:

again a surprising result when you see it the first time, as the voltage is independent of the value of the resistor. This result can also be explained by resorting to the quantum mechanical world too, see Johnson-Nyquist Noise.

However, there is also an explanation which most electronics people like better or at least convinces them of the result: increasing the parallel resistance will add noise but the bandwidth of the system will decrease such that the overall result remains the same. It’s not difficult to prove this mathematically. However, does this mean that only parasitic capacitance is important? No, as your resistor is normally connected to other parts in the circuit which are bandwidth limited, that also plays a role. The simplest example of such a system is a resistor in parallel with a capacitor followed by a first order system as shown in Figure 3.


Figure 3 System with input capacitance and a first order amplifier with DC-gain A0 with bandwidth BW

If we call

then we can derive the noise output voltage is given by:

Formula 8 allows you to determine the contribution of the input capacitance (or input time constant) and the bandwidth of the amplifier to the noise voltage at the output. Note that when

the result reduces to:

which comes as no surprise. When

we get as the result:

For practical purposes we can finally deduce the following rule of thumb: when one time constant is at least 10 times smaller than the other, we will make an error smaller than 5 per cent by neglecting the smaller time constant.

References

  1. Some textbooks normalize the NEB by dividing “our NEB” by A2 REF, with AREF the gain at DC or at a reference frequency e.g. the gain in the pass band.
  2. Tiny transmitter sets frequency record: Revolutionary terahertz transmitter developed, Technische Universität Darmstadt
  3. Spice 2G6, ngspice rev 26, PSpice AD Lite from OrCAD17.2 and LTspice XVII

 

Related Posts

Applications

Fast 25kW SiC EV Charger Design; OnSemi and Würth Elektronik Webinar

4.5.2023
44
Market & Supply Chain

April 2023 ECIA NA Electronic Components Sales Sentiment Predicts Improvement in May

3.5.2023
60
Resistors

ROHM Unveiled Industry Thinnest 12W Metal Plate Shunt Resistor

27.4.2023
66

Upcoming Events

May 9
May 9 - May 11

PCIM 2023

May 9
May 9 @ 12:00 - May 11 @ 14:00 CEST

Volatiles Control in Hermetic Electronic Components

May 16
May 16 @ 12:00 - May 18 @ 14:00 EDT

Microwave Packaging Technology

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.