Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Introduces High Current 80VDC Board-Mount EMI Filters

    Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Sumida Announces New DC Common Mode Choke Coil Series

    KYOCERA AVX Releases New 3dB Hybrid Couplers

    SCHURTER Unveils High Voltage Fuses for EV Applications

    YAGEO Releases First to Market 750V Aluminum Capacitors

    binder Introduces M9 Compact Circular Connector

    Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Introduces High Current 80VDC Board-Mount EMI Filters

    Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Sumida Announces New DC Common Mode Choke Coil Series

    KYOCERA AVX Releases New 3dB Hybrid Couplers

    SCHURTER Unveils High Voltage Fuses for EV Applications

    YAGEO Releases First to Market 750V Aluminum Capacitors

    binder Introduces M9 Compact Circular Connector

    Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Rise of Metal Composite Inductors – Is there a Space for Ferrite Inductors?

30.6.2021
Reading Time: 4 mins read
A A

There have been the coil of choice for generations of engineers – Ferrite inductors. With the rise of metal composite inductors, however, there has finally been a solution to address some immanent weak spots of the ferrite inductors. Thus the question is – can metal composite inductors make conventional ferrite designs completely redundant?

Metal Composite vs Ferrite Inductors Key Differences

In the following article, we try to answer this question by explaining the different characteristics that emerge from different material and structure, looking at the range of metal composite inductors available on the market.

RelatedPosts

Panasonic Releases New Aluminum Hybrid Capacitors with High Ripple Current in Compact Size

Panasonic Expands Production of Hybrid Capacitors for AI

Panasonic Industry Extends OS-CON High-Voltage Aluminum Capacitors

The choice for downsizing

Metal composite inductors come with a remarkably higher energy density compared to their ferrite predecessors. This leads to 30% – 50% smaller case sizes which, for example, serves the trend for downsizing high current ECU power circuits. Furthermore, smaller case sizes also have the pleasant side-effect of being less prone to get damaged in harsh or vibrating environments. A true plus in terms of long term reliability.

See Figure 1. for volume vs weight comparison benchmark between metal composite chip inductors and different types of ferrite inductor types.

Figure 1. Ferrite vs Metal Composite Inductors Volume/Weight comparison; source: Panasonic

DC Bias characteristics

Excellent magnetic saturation characteristics of metal composite inductors (i.e. Ferrite core = 0.4T vs. Metal Composite Type = above 1.5T) render it difficult to magnetically saturate, which in turn is resulting in good inductance vs. current performance, without a substantial drop off. In comparison, ferrite inductors do not only suffer from a fairly quicker inductance drop off.

Their inductance also suffers the undesirable effect that it varies with temperature, whereas the performance of their metal composite counterparts is stable over the entire specified temperature range. Naturally, the qualification of applications using ferrite inductors needs increased effort compared to metal composite inductors due to consideration of different temperature ranges.

Figure 2. Inductance vs DC BIAS current comparison on ferrite and metal composite inductors with temperature; source: Panasonic

Low loss characteristics of metal composite vs ferrite inductors (see Figure 2.) assist realization of high efficiency power circuits such as ECU and makes thermal design considerations simple.

High Mechanical Shock and Vibration Robustness

Ferrite inductors consist of several sintered parts being constructively composed with an air gap inside the body, whereas metal composite inductors are based on a monolithic design without air gap.

Due to that assembled structure, the ferrite types’ resistance to vibrations is limited to <4G to maximum 10G. Opposed to that, the monolithic structure of the metal composite inductors leads to a significantly higher vibration resistance – up to 50G, depending on the inductor type – See Figure 3. This may be advantage for harsh environmental, high vibration applications such as automotive, industrial or aerospace/defense electronics.

Figure 3. Mechanical vibration robustness comparison of ferrite vs metal composite (MC) inductors; source: Panasonic

Low EMI noise

Also in terms of a lower leakage flux outside the power inductors, the point goes to the metal composite types: Their monolithic structure causes by far less leakage as the magnetic flux simply is concentrated inside the inductor housing. See figure 4.

Figure 4. EMI noise / magnetic flux comparison of ferrite vs metal composite inductors; source: Panasonic

Summary

Modern metal composite inductors clearly outperform ferrite technology in many regards and key requirements from modern electronic circuits. Hence, they are more and more finding their way into contemporary application design, in particular in the automotive industry.

Small package sizes, a stable inductance over DC current and temperature, high reliability as well as mechanical robustness and not at least a low EMI noise are nowadays essential prerequisites for next-gen product design. In all these aspects, metal composite inductors make their ferrite ancestors look as old as they are indeed.

Related

Source: Panasonic Industry

Recent Posts

TDK Introduces High Current 80VDC Board-Mount EMI Filters

2.7.2025
10

Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

2.7.2025
5

TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

1.7.2025
15

Sumida Announces New DC Common Mode Choke Coil Series

1.7.2025
8

SCHURTER Unveils High Voltage Fuses for EV Applications

30.6.2025
7

YAGEO Releases First to Market 750V Aluminum Capacitors

30.6.2025
33

Learn How Supercapacitors Enhance Power System in Knowles eBook

30.6.2025
13

YAGEO Expands One Turn Inductors for AI and High-Efficiency Power Applications

27.6.2025
32

YAGEO Extends Lifetime of its Aluminum SMD Chip Capacitors to 5500hrs at 125C/Ur

27.6.2025
19

Murata Releases Worlds First 10µF/50V Automotive MLCC in 0805 Size

26.6.2025
47

Upcoming Events

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version