• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication
Samsung Electro-Mechanics' small-size and high-capacity multi-layer ceramic capacitors (MLCCs) used in self-driving vehicles. Courtesy of Samsung Electro-Mechanics

Samsung Electro-Mechanics Develops MLCCs for Automotive ADAS Systems

12.8.2021

Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

21.3.2023

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

20.3.2023

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

20.3.2023

Flying Capacitors Explained

17.3.2023

TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

16.3.2023

ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

16.3.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    TDK Extends Range of Industrial Single Pair Ethernet (SPE) Inductors

    Premo Unveils New series of 11kW 3-Phase On-Board Charger Transformers

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    TDK Extends Range of Industrial Single Pair Ethernet (SPE) Inductors

    Premo Unveils New series of 11kW 3-Phase On-Board Charger Transformers

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Samsung Electro-Mechanics Develops MLCCs for Automotive ADAS Systems

12.8.2021
Reading Time: 3 mins read
0 0
Samsung Electro-Mechanics' small-size and high-capacity multi-layer ceramic capacitors (MLCCs) used in self-driving vehicles. Courtesy of Samsung Electro-Mechanics

Samsung Electro-Mechanics' small-size and high-capacity multi-layer ceramic capacitors (MLCCs) used in self-driving vehicles. Courtesy of Samsung Electro-Mechanics

0
SHARES
186
VIEWS

Samsung Electro-Mechanics developed small-size, ultra-high-capacity MLCCs required for ADAS with improved durability such as rated voltage and bending strength. Advanced Drive Assist Systems (ADAS) has shown 20% annual growth in MLCC demand due to the increase in ADAS features for compact, large-capacity products due to the advancement of autonomous driving technology.

Samsung Electro-Mechanics announced that it has developed two types of automotive MLCCs that go in the Advanced Drive Assist System (ADAS), an essential safe driving system for autonomous vehicles.

RelatedPosts

MLCC Class II DC BIAS Explained, Samsung Video

How to Read MLCC Spec Sheet? Samsung Video

High Voltage MLCC for EV Powertrain

Advanced Drive Assist Systems (ADAS) refer to technologies that control mechanical devices by recognizing and judging situations that may occur during autonomous driving, which include Lane Keeping Assist System (LKAS), Surround View Monitor (SVM), and Smart Cruise Control (SCC). With the advancement of vehicle functions, the number of high-performance semiconductors and components mounted inside the vehicle is gradually increasing. In particular, autonomous vehicles require reliable energy (power) supply and signal noise removal for various chips to receive signals quickly, and small-size and high-capacity MLCCs are required due to the lack of mounting space with the increasing number of components.

The MLCCs newly developed by Samsung Electro-Mechanics are a small-size product with the 0603 (0.6mm wide, 0.3mm long) size and a capacity of 100nF (nanofarad), and a high-capacity product with the 3216 (3.2mm wide, 1.6mm long) size and a capacity of 47μF (microfarad).

The 0603 MLCC achieved the same 100nF (nanofarad) capacity as the 1005 product while reducing the surface area by 64% compared to the 1005 (1.0mm wide, 0.5mm long) size. This product is mounted on the signal end of a vehicle’s electronic control unit (ECU) to eliminate surrounding signal noise and deliver signals accurately.

Furthermore, the bending strength of the new product is twice stronger than the standard to prevent the MLCC from being damaged by the shock and vibration sent during driving, increasing product reliability. In particular, the product meets AEC-Q200, the automotive electronic component reliability test standard, so it can be used not only in ADAS but also in other applications such as body, chassis, and infotainment. 

The 3216-size (3.2mm wide and 1.6mm long) MLCC is a 47μF product that has more than double the capacity of a 22μF product, reliably supplying power to semiconductors in the vehicle. Recently, automotive semiconductors are becoming increasingly advanced to process more data quickly to keep up with advanced ADAS features. High-performance chips require high power consumption to operate. This is why high-capacity MLCCs that can store and supply a lot of energy are essential. Samsung Electro-Mechanics achieved the industry’s highest capacity among products of the same size by miniaturizing dielectric ceramic powder, a core material of MLCC, to a nano level as well as using an ultra-precise lamination method.
The durability was also improved by increasing the rated supply voltage (the maximum voltage that can be supplied without causing damage) by 1.5 times (4V → 6.3V) compared to the existing product while maintaining an ultra-high capacity of 47μF.

“The demand for compact, high-capacity and highly reliable MLCCs is increasing significantly with vehicles going electric,” said Dooyoung Kim, Executive Vice President of the Component Solution Unit at Samsung Electro-Mechanics. “Samsung Electro-Mechanics will strengthen its technological competitiveness by developing and manufacturing core raw materials for MLCCs, and expand the market share in automotive MLCCs by internalizing facilities and increasing production capacity.”

Samsung Electro-Mechanics is reinforcing its lineup of high-value-added electronic products with high-temperature, high-voltage, and high-reliability characteristics, based on its technological edge in the ultra-compact and ultra-high-capacity MLCC sector. 

Source: Samsung Electro-Mechanics

Related Posts

Capacitors

Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

21.3.2023
44
Capacitors

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

20.3.2023
15
Market & Supply Chain

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

20.3.2023
15

Upcoming Events

Mar 19
March 19 - March 23

APEC 2023

Mar 22
14:00 - 15:00 CET

Parasitic Components in Power Converters – Fundamentals and Measurements Rohde & Schwarz Webinar

Apr 3
April 3 @ 12:00 - April 4 @ 14:00 CEST

Microelectronic Packaging Failure Modes and Analysis

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.