Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Unveils Smallest Automotive Grade Thick Film Resistors

    Wk 28 Electronics Supply Chain Digest

    Bourns Increases Maximum Inductance Values of Semi-Shielded Power Inductors

    YAGEO Unveils Next Gen BMS Isolation Transformers

    Littelfuse Compact Tactile Switch Offers Low-Noise Switching and Dust Protection

    Murata Announces Mass Manufacturing of World’s First 0402 47µF MLCC

    Bourns Releases SMD Chip High-Power Metal Strip Current Sense Resistors in 2010 Case

    Würth Elektronik Releases High-Frequency Connectors for Antenna Cables

    Murata Releases First High-Frequency XBAR Filter for Next-Gen Networks

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Unveils Smallest Automotive Grade Thick Film Resistors

    Wk 28 Electronics Supply Chain Digest

    Bourns Increases Maximum Inductance Values of Semi-Shielded Power Inductors

    YAGEO Unveils Next Gen BMS Isolation Transformers

    Littelfuse Compact Tactile Switch Offers Low-Noise Switching and Dust Protection

    Murata Announces Mass Manufacturing of World’s First 0402 47µF MLCC

    Bourns Releases SMD Chip High-Power Metal Strip Current Sense Resistors in 2010 Case

    Würth Elektronik Releases High-Frequency Connectors for Antenna Cables

    Murata Releases First High-Frequency XBAR Filter for Next-Gen Networks

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Samsung Electro-Mechanics Develops MLCCs for Automotive ADAS Systems

12.8.2021
Reading Time: 3 mins read
A A
Samsung Electro-Mechanics' small-size and high-capacity multi-layer ceramic capacitors (MLCCs) used in self-driving vehicles. Courtesy of Samsung Electro-Mechanics

Samsung Electro-Mechanics' small-size and high-capacity multi-layer ceramic capacitors (MLCCs) used in self-driving vehicles. Courtesy of Samsung Electro-Mechanics

Samsung Electro-Mechanics developed small-size, ultra-high-capacity MLCCs required for ADAS with improved durability such as rated voltage and bending strength. Advanced Drive Assist Systems (ADAS) has shown 20% annual growth in MLCC demand due to the increase in ADAS features for compact, large-capacity products due to the advancement of autonomous driving technology.

Samsung Electro-Mechanics announced that it has developed two types of automotive MLCCs that go in the Advanced Drive Assist System (ADAS), an essential safe driving system for autonomous vehicles.

RelatedPosts

Samsung Delivers Silicon Capacitors to Marwell AI Systems

Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

Advanced Drive Assist Systems (ADAS) refer to technologies that control mechanical devices by recognizing and judging situations that may occur during autonomous driving, which include Lane Keeping Assist System (LKAS), Surround View Monitor (SVM), and Smart Cruise Control (SCC). With the advancement of vehicle functions, the number of high-performance semiconductors and components mounted inside the vehicle is gradually increasing. In particular, autonomous vehicles require reliable energy (power) supply and signal noise removal for various chips to receive signals quickly, and small-size and high-capacity MLCCs are required due to the lack of mounting space with the increasing number of components.

The MLCCs newly developed by Samsung Electro-Mechanics are a small-size product with the 0603 (0.6mm wide, 0.3mm long) size and a capacity of 100nF (nanofarad), and a high-capacity product with the 3216 (3.2mm wide, 1.6mm long) size and a capacity of 47μF (microfarad).

The 0603 MLCC achieved the same 100nF (nanofarad) capacity as the 1005 product while reducing the surface area by 64% compared to the 1005 (1.0mm wide, 0.5mm long) size. This product is mounted on the signal end of a vehicle’s electronic control unit (ECU) to eliminate surrounding signal noise and deliver signals accurately.

Furthermore, the bending strength of the new product is twice stronger than the standard to prevent the MLCC from being damaged by the shock and vibration sent during driving, increasing product reliability. In particular, the product meets AEC-Q200, the automotive electronic component reliability test standard, so it can be used not only in ADAS but also in other applications such as body, chassis, and infotainment. 

The 3216-size (3.2mm wide and 1.6mm long) MLCC is a 47μF product that has more than double the capacity of a 22μF product, reliably supplying power to semiconductors in the vehicle. Recently, automotive semiconductors are becoming increasingly advanced to process more data quickly to keep up with advanced ADAS features. High-performance chips require high power consumption to operate. This is why high-capacity MLCCs that can store and supply a lot of energy are essential. Samsung Electro-Mechanics achieved the industry’s highest capacity among products of the same size by miniaturizing dielectric ceramic powder, a core material of MLCC, to a nano level as well as using an ultra-precise lamination method.
The durability was also improved by increasing the rated supply voltage (the maximum voltage that can be supplied without causing damage) by 1.5 times (4V → 6.3V) compared to the existing product while maintaining an ultra-high capacity of 47μF.

“The demand for compact, high-capacity and highly reliable MLCCs is increasing significantly with vehicles going electric,” said Dooyoung Kim, Executive Vice President of the Component Solution Unit at Samsung Electro-Mechanics. “Samsung Electro-Mechanics will strengthen its technological competitiveness by developing and manufacturing core raw materials for MLCCs, and expand the market share in automotive MLCCs by internalizing facilities and increasing production capacity.”

Samsung Electro-Mechanics is reinforcing its lineup of high-value-added electronic products with high-temperature, high-voltage, and high-reliability characteristics, based on its technological edge in the ultra-compact and ultra-high-capacity MLCC sector. 

Related

Source: Samsung Electro-Mechanics

Recent Posts

Bourns Unveils Smallest Automotive Grade Thick Film Resistors

14.7.2025
1

YAGEO Unveils Next Gen BMS Isolation Transformers

10.7.2025
14

Murata Announces Mass Manufacturing of World’s First 0402 47µF MLCC

10.7.2025
21

Bourns Releases SMD Chip High-Power Metal Strip Current Sense Resistors in 2010 Case

10.7.2025
8

Vishay NTC Immersion Thermistor Delivers Fast Response in Liquid Cooled Automotive Systems

8.7.2025
8

VINATech Supercapacitors Enhance Automotive Safety with Reliable E-Latch Emergency Power

7.7.2025
38

Exxelia Unveils Advanced Components for the Medical Device Industry

9.7.2025
47

TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

1.7.2025
32

SCHURTER Unveils High Voltage Fuses for EV Applications

30.6.2025
10

YAGEO Releases First to Market 750V Aluminum Capacitors

30.6.2025
51

Upcoming Events

Jul 16
16:00 - 17:00 CEST

Design a 2kW PSFB converter before your cold drink gets warm

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version