Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Rubycon Extends Capacitance of Polymer Hybrid Aluminum Capacitors

    VINATech Partner with ONiO to Develop Batteryless IoT Power Architecture

    Knowles Releases Inductors for Mission-Critical RF Applications

    Bourns Unveils Smallest Automotive Grade Thick Film Resistors

    Wk 28 Electronics Supply Chain Digest

    Bourns Increases Maximum Inductance Values of Semi-Shielded Power Inductors

    YAGEO Unveils Next Gen BMS Isolation Transformers

    Littelfuse Compact Tactile Switch Offers Low-Noise Switching and Dust Protection

    Murata Announces Mass Manufacturing of World’s First 0402 47µF MLCC

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Rubycon Extends Capacitance of Polymer Hybrid Aluminum Capacitors

    VINATech Partner with ONiO to Develop Batteryless IoT Power Architecture

    Knowles Releases Inductors for Mission-Critical RF Applications

    Bourns Unveils Smallest Automotive Grade Thick Film Resistors

    Wk 28 Electronics Supply Chain Digest

    Bourns Increases Maximum Inductance Values of Semi-Shielded Power Inductors

    YAGEO Unveils Next Gen BMS Isolation Transformers

    Littelfuse Compact Tactile Switch Offers Low-Noise Switching and Dust Protection

    Murata Announces Mass Manufacturing of World’s First 0402 47µF MLCC

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Samsung Electro-Mechanics Unveils World’s Highest Capacitance 16V Automotive Grade MLCCs

22.1.2024
Reading Time: 2 mins read
A A

Samsung Electro-Mechanics develops world’s highest capacitance automotive MLCC ceramic capacitors at 16V rating for ADAS and autonomous driving cars.

Samsung Electro-Mechanics announced on January 19th that it has developed high-voltage, high-capacitance MLCCs for the Advanced Drive Assist System (ADAS), an essential system for autonomous driving cars, and will target the market by expanding its lineup of high-performance automotive products.

RelatedPosts

Samsung Delivers Silicon Capacitors to Marwell AI Systems

Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

Components that control the constant and stable flow of current in the circuits of electronic products, widely used in smartphones, PCs, IT devices, home appliances, automobiles, 5G, and IoT-related products. In particular, automobiles contain at least 3,000 to 10,000 MLCCs for powertrain, safety, driving, infotainment, etc.

The MLCCs developed this time have high-voltage characteristics rated at 16V (volts) and are available in two models: the 0603 size (0.6mm wide by 0.3mm long) with 100nF (nanofarad) capacitance and the 1608 size (1.6mm wide by 0.8mm long) with 4.7uF (microfarad) capacitance.

These products are used in the Gateway module, a core device for autonomous driving. The automotive Gateway is a core system that provides integrated management of each ADAS function within the vehicle and securely transmits data. Stable power supply and signal noise removal are essential to ensure fast and accurate signal transmission between semiconductors. Especially, due to the advancement of autonomous driving functions, fast charging of electric vehicles, and increased driving distance, ultra-compact, high-capacitance, and high-voltage MLCCs are required.

The two models developed this time offer the industry’s highest capacity and high voltage within the same sizes.

Typically, MLCCs have difficulty satisfying voltage and capacity characteristics at the same time. If the dielectric substances that store electricity are designed to be thicker to increase voltage characteristics, the number of internal dielectric layers that can be stacked decreases, making it difficult to increase capacity. Samsung Electro-Mechanics achieved high capacitance by refining its core raw material, dielectric ceramic powder, to the nanoscale level. In addition, the application of proprietary additives and new methods minimizes the amount of empty space in the dielectric substance, enabling stable operation at high voltages.

Executive Vice President Choi Jeremy, head of the Component Solution Unit at Samsung Electro-Mechanics, said, “The demand for compact, high-performance, and high-reliability MLCCs is increasing significantly due to the electronization of automobiles,” adding, “Samsung Electro-Mechanics will enhance its technological competitiveness by developing and manufacturing core raw materials for MLCCs in-house and strengthen its automotive business by expanding its automotive lineup through internalization of facilities and strengthening production capacity.”

Samsung Electro-Mechanics is strengthening its lineup of high-temperature, high-pressure, and high-reliability automotive products based on its technological prowess in the ultra-compact, ultra-high-capacity MLCC category, and is expanding its supply of MLCCs to global auto component companies and automakers.

Related

Source: Samsung Electro-Mechanics

Recent Posts

Rubycon Extends Capacitance of Polymer Hybrid Aluminum Capacitors

16.7.2025
56

VINATech Partner with ONiO to Develop Batteryless IoT Power Architecture

16.7.2025
17

Bourns Unveils Smallest Automotive Grade Thick Film Resistors

14.7.2025
20

YAGEO Unveils Next Gen BMS Isolation Transformers

10.7.2025
21

Murata Announces Mass Manufacturing of World’s First 0402 47µF MLCC

10.7.2025
45

Bourns Releases SMD Chip High-Power Metal Strip Current Sense Resistors in 2010 Case

10.7.2025
10

Vishay NTC Immersion Thermistor Delivers Fast Response in Liquid Cooled Automotive Systems

8.7.2025
14

VINATech Supercapacitors Enhance Automotive Safety with Reliable E-Latch Emergency Power

7.7.2025
50

Exxelia Unveils Advanced Components for the Medical Device Industry

9.7.2025
50

TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

1.7.2025
33

Upcoming Events

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version