• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Scientists find a way to increase the capacity of supercapacitors for portable electronics

30.5.2019

GAM Introduces Tantalum and Niobium Powders for Cold Spray Applications

18.5.2022

Skeleton Curved Graphene Scientists Named as European Inventor Award 2022 Finalists

18.5.2022

Flexible Cable Supercapacitor Application in EVs and HEVs

17.5.2022

Snubber Capacitor Selection for SiC-Based Switching Converters

17.5.2022
  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    GAM Introduces Tantalum and Niobium Powders for Cold Spray Applications

    Skeleton Curved Graphene Scientists Named as European Inventor Award 2022 Finalists

    Flexible Cable Supercapacitor Application in EVs and HEVs

    Snubber Capacitor Selection for SiC-Based Switching Converters

    Vishay Releases High Precision Compact Thin Film Wraparound Chip Resistor 

    TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

    Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

    European Electronic Components Distribution Under Strong Demand and Allocation in Q1 2022

    Tecate Releases Small-Cell 3V Supercapacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Flat Wire Inductors for Electrical Cars; WE Webinar

    Ferrite Filter Features and Selection Guide; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    GAM Introduces Tantalum and Niobium Powders for Cold Spray Applications

    Skeleton Curved Graphene Scientists Named as European Inventor Award 2022 Finalists

    Flexible Cable Supercapacitor Application in EVs and HEVs

    Snubber Capacitor Selection for SiC-Based Switching Converters

    Vishay Releases High Precision Compact Thin Film Wraparound Chip Resistor 

    TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

    Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

    European Electronic Components Distribution Under Strong Demand and Allocation in Q1 2022

    Tecate Releases Small-Cell 3V Supercapacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Flat Wire Inductors for Electrical Cars; WE Webinar

    Ferrite Filter Features and Selection Guide; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Scientists find a way to increase the capacity of supercapacitors for portable electronics

30.5.2019
Reading Time: 2 mins read
0 0
0
SHARES
272
VIEWS

Source: Skolkovo Institute of Science and Technology – Skoltech news

Scientists from Skoltech, Moscow State University (MSU) and Moscow Institute of Physics and Technology (MIPT) have proposed a new approach to replacing carbon atoms with nitrogen atoms in the supercapacitor’s crystal lattice and developed a novel capacity enhancement method based on carbon lattice modification with the aid of plasma. Their findings can help create the next generation of power sources for portable electronics. The results of their study were published in Nature – Scientific Reports.

RelatedPosts

GAM Introduces Tantalum and Niobium Powders for Cold Spray Applications

Skeleton Curved Graphene Scientists Named as European Inventor Award 2022 Finalists

Flexible Cable Supercapacitor Application in EVs and HEVs

As portable devices evolve, the demand for new types of energy sources grows. Scientists keep looking for an effective way to improve the performances of electrochemical energy sources. A chemical source of current, the supercapacitor is distinguished by high charge and discharge rates and a higher energy storage capacity per unit mass or volume as compared to a battery.

It is customary to use porous materials, such as carbon or porous metals, for supercapacitors, although metals make the source much heavier. There are several ways of increasing the capacity of electrochemical energy sources while keeping their weight unchanged, for example, by using other lighter elements or incorporating the atoms of another element into the crystal lattice (doping.)

The second method is believed to offer better prospects, as it allows easy atom incorporation at the carbon structure synthesis stage. Nitrogen is one of the elements considered for doping. Nitrogen is involved in redox reactions, which leads to an additional increase in capacity. Although scientists have long been aware of the doping method, the effect of nitrogen on the electrochemical characteristics is still poorly understood.

A group of scientists led by Skoltech Senior Researcher, Dr. Stanislav Evlashin, demonstrated a simple way of increasing the supercapacitors’ electrochemical performance. Their approach provides a better insight into the nitrogen incorporation process. The researchers performed the experiments using Carbon Nanowalls made of vertically oriented graphene sheets, in which they replaced some of the carbon with nitrogen using carbon structure treatment by plasma. The outcomes of the study are an important step towards creating new energy sources.

“In this study, we used a plasma post-treatment approach in order to improve the capacity of the electrodes,” explains Dr. Evlashin. “We used carbon structures with a high specific surface area as a material for doping in the nitrogen plasma and replaced a part of carbon atoms with nitrogen atoms to enhance the electrochemical capacity of the energy source. This approach can be applied to modify any carbon structure. The obtained samples were tested using various methods. The experimental results displayed a six-fold increase in electrochemical capacity and excellent cycling stability. We also performed DFT simulation of the nitrogen incorporation process that sheds some light on the complex incorporation mechanisms.”

Related Posts

Capacitors

GAM Introduces Tantalum and Niobium Powders for Cold Spray Applications

18.5.2022
5
Capacitors

Skeleton Curved Graphene Scientists Named as European Inventor Award 2022 Finalists

18.5.2022
5
Automotive

Flexible Cable Supercapacitor Application in EVs and HEVs

17.5.2022
61

Popular Posts

  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About

© 2021 EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© 2021 EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.