• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Smart Textiles: A Good Fit

27.2.2018

Flex Suppressor Explained and its Applications

24.3.2023

Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

23.3.2023

Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

23.3.2023

Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

21.3.2023

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

20.3.2023

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

20.3.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Flex Suppressor Explained and its Applications

    Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

    Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

    Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Flex Suppressor Explained and its Applications

    Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

    Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

    Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Smart Textiles: A Good Fit

27.2.2018
Reading Time: 3 mins read
0 0
0
SHARES
564
VIEWS

source: TTI Market Eye article

Wearables have moved beyond smart watches, fitness trackers and monitors that can measure human physiology. Wearable electronics can now merge seamlessly into ordinary clothing, becoming an organic part of what we wear. This new class of wearable electronics is being designed to meet innovative applications in the military, public safety, healthcare, sports and consumer fitness.

RelatedPosts

Flex Suppressor Explained and its Applications

Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

Integrating electronics directly on or into textile substrates involves two major technologies: printing using conductive ink-based solutions and/or embroidering circuits and components directly onto textile substrates via conductive threads.

Let’s look at developments in both types.

Additive printing processes permits the creation of functional electronic components and circuitries. While conductive inks traditionally are used for printing on films and papers, by changing the viscosity of a conductive ink it becomes possible to print on different substrates including textiles. In general, the circuits are made using conventional inkjet printing techniques. The resulting printed circuits are stretchable, comfortable to wear, and can survive numerous cycles in a typical washing machine.

As an example, consider that U.S. team’s parkas made for the opening ceremony of the Winter Olympics in Pyeongchang, where the average temperature in February is about 20 degrees but is widely expected to drop down to single digits this year, employs stretchable conductive carbon and silver ink electrodes printed on the apparel as a hidden heating component. The flexible ink conducts heat and is bonded to the inside of the Ralph Lauren-designed jackets in the shape of an American flag. The heat is controlled by a slim battery pack and can be adjusted to a high or a low setting with up to five hours of heating available at the highest setting and up to 11 hours at the lowest setting.

Blending Electronics with Textiles
For over a decade, textile circuits have been realized by embroidering conductive yarns onto fabric. Unlike metal wires most conductive fibers are so flexible they do not crack or snap if repeatedly bent. This means they can be fed into a loom or embroidered directly onto cloth that can be worn and washed as normal. So-called “Smart Textiles” for military use improve the performance of soldiers by offering them more mobility and fast connectivity. These textiles also safeguard military personnel from visual and infrared light. What is more, integration of smart textiles in military clothing enables a control center to monitor the location, physiological condition or other vital information of the soldier on the ground. The global market for Smart Textiles for the military is expected to grow at a CAGR of around 11% through 2021, according to the research firm Market Research Future.

Percentage of e-textile players using each material type (Image Source: E-Textiles 2017-2027, IDTechEx Research

Printed and Embroidered Passives Components
It is now possible to fabricate simple circuits embedded with several kinds of passive components (e.g., resistors, capacitors and inductors). In a research paper entitled “Printed and Embroidered Electronic Passive Components” presented at the 1st PCNS Passive Components Networking Days, (12-15th Sept. 2017, Brno, Czech Republic), author Tomas Blecha of the Department of Technologies and Measurement, Faculty of Electrical Engineering, University of West Bohemia in Pilsen, Czech Republic and his colleagues from the school’s Faculty of Electrical Engineering investigated and compared the electrical parameters of printed and embroidered planar passive electronic components (the full text is available from the European Passive Components Institute here or from PCNS2017 Proceedings, pgs.80-86). The authors studied different types of inductors and capacitors including meander inductors and square-shaped spiral and Interdigital capacitors (printed on PET foil, embroidered on a textile substrate and embroidered on the textile substrate with one conductive thread).

Printed electronic components were created with silver paste on flexible foil using screen printing technology. Planar components also were created by an embroidery machine. A hybrid thread was used consisting of polyester fibers that were spun with 8 brass wires. The thread consisted of 69% brass and 31% polyester and its electrical resistance was reported to be 7.7 Ω/m.

A Bright Future
Increasing expansion of the Internet of Things is driving demand for printed and embroidered electronics on fabrics. IDTechEx estimates that the total market for printed electronics and flexible printed electronics was worth some USD 7.6 billion in 2017 and will exceed USD 46 billion in 2027. Similarly, the research firm Markets and Markets values the printed electronics market at USD 3.13 billion in 2015 and expects it to reach USD 12.10 billion by 2022, with at a CAGR of 22.38% between 2016 and 2022.

by Murray Slovick

featured image source: power to the people – new material developed by physicists in South Korea generates electricity as it moves,by Sang-Woo Kim

Related Posts

Aerospace & Defence

Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

23.3.2023
27
Market & Supply Chain

Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

23.3.2023
37
Capacitors

Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

21.3.2023
103

Upcoming Events

Mar 29
17:00 - 18:00 CEST

Practical LLC Transformer Design Methodology

Apr 3
April 3 @ 12:00 - April 4 @ 14:00 CEST

Microelectronic Packaging Failure Modes and Analysis

Apr 5
11:00 - 12:00 CEST

Plugging – Filling – Tenting; WE PCB Webinar

View Calendar

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.