Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    ESR of Capacitors, Measurements and Applications

    Murata Christophe Pottier Appointed President of EPCIA

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    YAGEO Unveils Compact 2.4 GHz SMD Antenna

    KYOCERA AVX Releases Antenna for Iridium Satellite IoT Applications

    Molex Releases Industry-First Quad-Row Board-to-Board Connectors with EMI Shields

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    ESR of Capacitors, Measurements and Applications

    Murata Christophe Pottier Appointed President of EPCIA

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    YAGEO Unveils Compact 2.4 GHz SMD Antenna

    KYOCERA AVX Releases Antenna for Iridium Satellite IoT Applications

    Molex Releases Industry-First Quad-Row Board-to-Board Connectors with EMI Shields

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Supercapacitor Manufacturing Breakthrough – Researches Developed Micro-Supercapacitors on Silicon Wafer

10.3.2022
Reading Time: 3 mins read
A A
Micro supercapacitors can increase the lifespan of batteries and reduce their charging time in products like smartphones and electric cars. The image shows a 2 inch wide silicon wafer with integrated micro supercapacitors, manufactured using the CMOS-compatible process developed by Chalmers’ researchers. The wafer can be upscaled to a diameter of 8 inches to fit even more supercapacitor units. source: Chalmers University

Micro supercapacitors can increase the lifespan of batteries and reduce their charging time in products like smartphones and electric cars. The image shows a 2 inch wide silicon wafer with integrated micro supercapacitors, manufactured using the CMOS-compatible process developed by Chalmers’ researchers. The wafer can be upscaled to a diameter of 8 inches to fit even more supercapacitor units. source: Chalmers University

Researchers at Chalmers University of Technology, Sweden, have developed a method that represents a breakthrough for how supercapacitors can be produced. Integrated micro-supercapacitors have been manufactured on silicon wafer using the CMOS-compatible process.

Micro-supercapacitors could revolutionise the way we use batteries by increasing their lifespan and enabling extremely fast charging. Manufacturers of everything from smartphones to electric cars are therefore investing heavily into research and development of these electronic components.

RelatedPosts

Researchers Introduced 300°C High Temperature Capable Solid Electrolyte Supercapacitors

Selection Guide for EMI Suppression Polypropylene Film Capacitors KEMET Tech Note

Hybrid vs EDLC Supercapacitors; Vishay Video

​“When discussing new technologies, it is easy to forget how important the manufacturing method is, so that they can actually be commercially produced and be impactful in society. Here, we have developed methods that can really work in production,” explains Agin Vyas, doctoral student at the Department of Microtechnology and Nanoscience at Chalmers University of Technology and lead author of the article.

Supercapacitors consist of two electrical conductors separated by an insulating layer. They can store electrical energy and have many positive properties compared to a normal battery, such as much more rapid charging, more efficient energy distribution, and a much greater lifespan without loss of performance, with regards to the charge and discharge cycle. When a supercapacitor is combined with a battery in an electrically powered product, the battery life can be extended many times –up to 4 times for commercial electric vehicles. And whether for personal electronic devices or industrial technologies, the benefits for the end consumer could be huge.

“It would of course be very convenient to be able to quickly charge, for example, an electric car or not have to change or charge batteries as often as we currently do in our smartphones. But it would also represent a great environmental benefit and be much more sustainable, if batteries had a longer lifespan and did not need to be recycled in complicated processes,” says Agin Vyas.

Manufacturing a big challenge

But in practice, today’s supercapacitors are too large for many applications where they could be useful. They need to be about the same size as the battery they are connected to, which is an obstacle to integrating them in mobile phones or electric cars. Therefore, a large part of today’s research and development of supercapacitors is about making them smaller – significantly so Agin Vyas and his colleagues have been working with developing ‘micro’ supercapacitors. These are so small that they can fit on the system circuits which control various functions in mobile phones, computers, electric motors and almost all electronics we use today. This solution is also called ‘system-on-a-chip’.

One of the most important challenges is that the minimal units need to be manufactured in such a way that they become compatible with other components in a system circuit and can easily be tailored for different areas of use. The new paper demonstrates a manufacturing process in which micro-supercapacitors are integrated with the most common way of manufacturing system circuits (known as CMOS).

“We used a method known as spin coating, a cornerstone technique in many manufacturing processes. This allows us to choose different electrode materials. We also use alkylamine chains in reduced graphene oxide, to show how that leads to a higher charging and storage capacity,” explains Agin Vyas.

“Our method is scalable and would involve reduced costs for the manufacturing process. It represents a great step forward in production technology and an important step towards the practical application of micro-supercapacitors in both everyday electronics and industrial applications.”

A method has also been developed for producing micro-supercapacitors of up to ten different materials in one unified manufacturing process, which means that properties can be easily tailored to suit several different end applications.

Results

In this article, we have demonstrated a scalable fabrication method to investigate the properties of CMOS compatible micro-supercapacitors. The micro-supercapacitors show capacitance of 0.1 mF cm−2 at 20 mV s−1, energy density of 54 μJ cm−2 at the same scan rate and power density of 0.3 mW cm−2.

Read the full study

Alkyl-Amino Functionalized Reduced-Graphene-Oxide–heptadecan-9-amine-Based Spin-Coated Microsupercapacitors for On-Chip Low Power Electronics in the journal Physica Status Solidi B.
https://doi.org/10.1002/pssb.202100304

The research has been funded by: EU Horizon 2020 (GreEnergy), Vinnova, SAAB.

Related

Source: Chalmers University

Recent Posts

RF Inductors: Selection and Design Challenges for High-Frequency Circuits

10.11.2025
26

Transformer Safety IEC 61558 Standard

7.11.2025
11

ESR of Capacitors, Measurements and Applications

7.11.2025
47

3-Phase EMI Filter Design, Simulation, Calculation and Test

6.11.2025
54
Image credit: Samtec

How to Match the Right Connector with Protocol Requirements

6.11.2025
14

Smoltek CNF-MIM Capacitors Pass 1,000h Reliability Test

6.11.2025
12

Capacitor Lead Times: October 2025

6.11.2025
67

Paumanok Unveils Aluminum Capacitor Foils World Markets Study 2025-2030

6.11.2025
15

Transformer Design Optimization for Power Electronics Applications

4.11.2025
23

Upcoming Events

Nov 12
11:00 - 12:00 CET

PCB Design: Impedance is for everyone!

Nov 12
November 12 @ 12:00 - November 13 @ 14:15 EST

Microelectronic Packaging Failure Modes and Analysis

Nov 13
11:00 - 11:30 CET

DC/DC Converters in Automotive Applications

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version