• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

The Science of Touch in Electronics Haptics, it Used to be All about Resonant Frequency

11.1.2022
Schematic of the structure of Co3O4@NiMoO4 composite samples

Researchers Achieved High Power Density of Transition Metal Oxides SC Electrodes

5.8.2022

TAIYO YUDEN Launches Automotive 150°C Compact Power Chip Inductor

5.8.2022

European Components Distribution Continues in Fast Grow in Q2 2022

5.8.2022

Alpha Electronics Opens New Foil Resistor Plant in Japan

5.8.2022

Murata Announces Chip Ferrite Beads with Highest Ever Current Capabilities

2.8.2022

Bourns Releases New Compact Size High Current Ferrite Beads

29.7.2022

HEICO to Acquire Exxelia

29.7.2022

Bourns Releases New Telecom Power Fuse Family

29.7.2022
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication
    Schematic of the structure of Co3O4@NiMoO4 composite samples

    Researchers Achieved High Power Density of Transition Metal Oxides SC Electrodes

    TAIYO YUDEN Launches Automotive 150°C Compact Power Chip Inductor

    European Components Distribution Continues in Fast Grow in Q2 2022

    Alpha Electronics Opens New Foil Resistor Plant in Japan

    Murata Announces Chip Ferrite Beads with Highest Ever Current Capabilities

    Bourns Releases New Compact Size High Current Ferrite Beads

    HEICO to Acquire Exxelia

    Bourns Releases New Telecom Power Fuse Family

    Bourns Releases New Current Sense Transformers

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Resistors for EVs and Automotive

    Transformer Design for EMC; WE Webinar

    Film Capacitor Failures Deep Dive Case Study

    Analogue Temperature Controller and Thermistor LTSpice Simulation Video

    Calculating the Inductance of a DC Biased Inductor

    Diode RC Snubber Explained

    Basics of PCB production, Part 1; WE Webinar

    Effects of Harsh Environmental Conditions on Film Capacitors

    Common-mode Choke Parameters Explained; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication
    Schematic of the structure of Co3O4@NiMoO4 composite samples

    Researchers Achieved High Power Density of Transition Metal Oxides SC Electrodes

    TAIYO YUDEN Launches Automotive 150°C Compact Power Chip Inductor

    European Components Distribution Continues in Fast Grow in Q2 2022

    Alpha Electronics Opens New Foil Resistor Plant in Japan

    Murata Announces Chip Ferrite Beads with Highest Ever Current Capabilities

    Bourns Releases New Compact Size High Current Ferrite Beads

    HEICO to Acquire Exxelia

    Bourns Releases New Telecom Power Fuse Family

    Bourns Releases New Current Sense Transformers

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Resistors for EVs and Automotive

    Transformer Design for EMC; WE Webinar

    Film Capacitor Failures Deep Dive Case Study

    Analogue Temperature Controller and Thermistor LTSpice Simulation Video

    Calculating the Inductance of a DC Biased Inductor

    Diode RC Snubber Explained

    Basics of PCB production, Part 1; WE Webinar

    Effects of Harsh Environmental Conditions on Film Capacitors

    Common-mode Choke Parameters Explained; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

The Science of Touch in Electronics Haptics, it Used to be All about Resonant Frequency

11.1.2022
Reading Time: 28 mins read
0 0
0
SHARES
300
VIEWS

The sense of touch is a critical element into an immersive user experience. Haptics is, essentially, the science of touch. According to IDTechEx, the haptics market will be worth nearly $5bn by 2025. How can an electronic device enhance the user experience through interacting with the sense of touch? Haptic technologies have been present in gaming and cell phone for a long time. More recent developments are enabling far more sophisticated user experiences.

KEMET Electro-Mechanical Polymer-based actuators are thin, light, flexible, and provide a wide range of haptic feedback that are mild, pleasing and distinguishable from one another thereby providing a wide range of localized feedback.

RelatedPosts

KEMET Releases Efficient EMI-RFI Three-Phase EMC Filter

KEMET Introduces 1kV Automotive Grade Common Mode Choke

KEMET Extends Lifetime of AO-CAP Aluminum Polymer SMD Chip Capacitors

The paper was presented by Marina Innocenti, KEMET Electronics, Bologna, Italy at the 3rd PCNS 7-10th September 2021, Milano, Italy as paper No.4.2.

Jump to section

4. SUMMARY AND CONCLUSIONS

  • 1. HAPTIC SENSORS INTRODUCTION
  • 2. KEMER ACTUATOR DESIGN & INTEGRATION
  • 3. BUTTON SHELL
  • 4. SUMMARY AND CONCLUSIONS

SUMMARY AND CONCLUSIONS

In the past century both analogic and digital electronics have made tremendous advancements realizing devices that could reproduce the objects, people, scenes, and experiences, through video, sound, and even touch. Today, we are witnessing how haptics as having a strong role in stimulating and developing research in bringing current technologies to a wider commercial market in the very near future.

Until now the training topics have been focused on advancements in materials science and engineering, but a growing interest in methods for designing and fabricating these materials into functional devices and systems is what will carry research in the years to come. Among the promising developments, Electro active polymer actuators are emerging due to their intrinsic properties such as flexibility, stretchability, transparency, and self-healing, paired with surprising haptic feedback capabilities. The flexibility and the versatility of EAP actuators, as reported in this paper, can lead to their application in an almost infinite number of applications and technologies.

Solutions to integrate KEMET Film Flex Assembled Actuator in both flexible and rigid shapes, surfaces and volumes have been presented and very interesting results that could lead to new devices development have been achieved. Even if the complete integration of this technology may still present numerous challenges, the active research in application fields such as mechanics, biomedical, VR/AR and computer science areas suggests that the currently large gap between actual technology and final application continue to shrink. This may lead to future haptic technologies that will attain widespread applications, with commensurately large implications for human society and economy.

REFERENCES

[1] M. Sreelakshmi, T. Subash, “Haptic Technology: A comprehensive review on its applications and future prospects,” Mater. Today Proc. 2017, 4, 4182–4187.
[2] S. Laycock, A. Day, “Recent Developments and Applications of Haptic Devices,” Comput. Graph. Forum 2003, 22, 117–132.
[3] A. Alur, P. Shrivastav, A. Jumde, “Haptic Technology: A Comprehensive Review of its Applications and Future Prospects,” (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5), 2014, 6039-6043.
[4] J. Song, J.H. Lim, M.H. Yun, “Finding the Latent Semantics of Haptic Interaction Research: A Systematic Literature Review of Haptic Interaction Using Content Analysis and Network Analysis,” Hum. Factors Ergon. Manuf. Serv. Ind. 2016, 26, 577–594.
[5] H. Seifi, F. Fazlollahi, M. Oppermann, J. Sastrillo, J. Ip, A. Agrawal, G. Park, K. Kuchenbecker, K. Maclean, “Haptipedia: Accelerating Haptic Device Discovery to Support Interaction and Engineering Design,” In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI ’19), Glasgow, UK, 4–9 May 2019; pp. 1–12.
[6] J.J. Berkley, “Haptic Devices,” Mimic Technologies Inc.: Seattle, WA, USA, 2003.
[7] M.A. Srinivasan, “What Is Haptics? Laboratory for Human and Machine Haptics,” Cambridge, MA, USA, 2001.
[8] X. Sun, K. Andersson, U. Sellgren, “Towards a Methodology for Multidisciplinary Design Optimization of Haptic Devices,” In Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, MA, USA, 2–5 August 2015;
[9] H.Z. Tan, S. Choi, F.W.Y. Lau, F. Abnousi, “Methodology for Maximizing Information Transmission of Haptic Devices: A Survey,” Proc. IEEE 2020, 108, 945–965.
[10] S. Hsiao and J. Yau, “Neural basis of haptic perception,” in Human Haptic Perception: Basics and Applications, M. Grunwald, Ed. Basel: Birkhäuser Basel, 2008, pp. 103–112.
[11] R. S. Johansson and J. R. Flanagan, “Coding and use of tactile signals from the fingertips in object manipulation tasks,” Nat. Rev. Neurosci., vol. 10, no. 5, pp. 345–359, 2009, doi: 10.1038/nrn2621.
[12] J. A. McGrath and J. Uitto, “Anatomy and Organization of Human Skin,” Rook’s Textb. Dermatology Eighth Ed., vol. 1, pp. 34–86, 2010, doi: 10.1002/9781444317633.ch3.
[13] J. Dargahi and S. Najarian, “Human tactile perception as a standard for artificial tactile sensing—a review,” Int. J. Med. Robot. Comput. Assist. Surg., vol. 1, no. 1, pp. 23–35, Jun. 2004, doi: https://doi.org/10.1002/rcs.3.
[14] E. Kandel, J. Schwartz, “Principles of Neural Science,” Fifth Edit. Elsevier, 2013.
[15] V. Mountcastle, “The Sensory Hand: Neural Mechanisms of Somatic Sensation,” Harvard University Press, 2005.
[16] M. Nolano et al., “Quantification of myelinated endings and mechanoreceptors in human digital skin,” Ann. Neurol., vol. 54, no. 2, pp. 197–205, Aug. 2003, doi: https://doi.org/10.1002/ana.10615.
[17] A. W. Freeman and K. O. Johnson, “Cutaneous mechanoreceptors in macaque monkey: temporal discharge patterns evoked by vibration, and a receptor model,” J. Physiol., vol. 323, no. 1, pp. 21–41, Feb. 1982, doi: https://doi.org/10.1113/jphysiol.1982.sp014059.
[18] M. A. Muniak, S. Ray, S. S. Hsiao, J. F. Dammann, and S. J. Bensmaia, “The Neural Coding of Stimulus Intensity: Linking the Population Response of Mechanoreceptive Afferents with Psychophysical Behavior,” J. Neurosci., vol. 27, no. 43, pp. 11687 LP – 11699, Oct. 2007, doi: 10.1523/JNEUROSCI.1486-07.2007.
[19] J. Bell, S. Bolanowski, and M. H. Holmes, “The structure and function of pacinian corpuscles: A review,” Prog. Neurobiol., vol. 42, no. 1, pp. 79–128, 1994, doi: https://doi.org/10.1016/0301-0082(94)90022-1.
[20] N. Cauna, “Structure and origin of the capsule of Meissner’s corpuscle,” Anat. Rec., vol. 124, no. 1, pp. 77–93, Jan. 1956, doi: https://doi.org/10.1002/ar.1091240106.
[21] M. Paré, R. Elde, J. E. Mazurkiewicz, A. M. Smith, and F. L. Rice, “The Meissner Corpuscle Revised: A Multiafferented Mechanoreceptor with Nociceptor Immunochemical Properties,” J. Neurosci., vol. 21, no. 18, pp. 7236 LP – 7246, Sep. 2001, doi: 10.1523/JNEUROSCI.21-18-07236.2001.
[22] D. C. Pease and T. A. Quilliam, “ELECTRON MICROSCOPY OF THE PACINIAN CORPUSCLE ,” J. Biophys. Biochem. Cytol., vol. 3, no. 3, pp. 331–342, May 1957, doi: 10.1083/jcb.3.3.331.
[23] R. S. Johansson, “Tactile sensibility in the human hand: receptive field characteristics of mechanoreceptive units in the glabrous skin area.,” J. Physiol., vol. 281, no. 1, pp. 101–125, Aug. 1978, doi: https://doi.org/10.1113/jphysiol.1978.sp012411.
[24] A. B. Vallbo and R. S. Johansson, “Properties of cutaneous mechanoreceptors in the human hand related to touch sensation,” Hum. Neurobiol., vol. 3, no. 1, pp. 3–14, 1984.
[25] I. Birznieks, V. G. Macefield, G. Westling, and R. S. Johansson, “Slowly Adapting Mechanoreceptors in the Borders of the Human Fingernail Encode Fingertip Forces,” J. Neurosci., vol. 29, no. 29, pp. 9370 LP – 9379, Jul. 2009, doi: 10.1523/JNEUROSCI.0143-09.2009.
[26] M. Paré, C. Behets, and O. Cornu, “Paucity of presumptive ruffini corpuscles in the index finger pad of humans,” J. Comp. Neurol., vol. 456, no. 3, pp. 260–266, Feb. 2003, doi: https://doi.org/10.1002/cne.10519.
[27] B. D. Gynther, R. M. Vickery, and M. J. Rowe, “Responses of slowly adapting type II afferent fibres in cat hairy skin to vibrotactile stimuli.,” J. Physiol., vol. 458, no. 1, pp. 151–169, Dec. 1992, doi: https://doi.org/10.1113/jphysiol.1992.sp019411.
[28] S. Biswas and Y. Visell, “Haptic Perception, Mechanics, and Material Technologies for Virtual Reality,” Adv. Funct. Mater., vol. 2008186, pp. 1–16, 2021, doi: 10.1002/adfm.202008186.
[29] T.H. Yang, J.R. Kim, H. Jin, H. Gil, J.H. Koo, H.J. Kim, “Recent Advances and Opportunities of Active Materials
for Haptic Technologies in Virtual and Augmented Reality,” Adv. Funct. Mater. 2021, 2008831
[30] J. Tapson, J. Diaz, D. Sander, N. Gurari, E. Chicca, P. Pouliquen, R. Etienne-Cummings, “The Feeling of Color: A Haptic Feedback Device for the Visually Disabled,” IEEE 2008, 978-1-4244-2879-3/08
[31] B. Horan, S. Nahavandi, D. Creighton, E. Tunstel, “Fuzzy Haptic Augmentation for Telerobotic Stair Climbing,” IEEE 2007, 1-4244-0991-8/07/IEEE
[32] C. Basdogan, F. Giraud, V. Levesque, S. Choi, “A Review of Surface Haptics: Enabling Tactile Effects on Touch Surfaces,” IEEE Trans. Haptics 2020.
[33] D. Pyo, S. Ryu, K.-U. Kyung, S. Yun, D.-S. Kwon, “High-pressure endurable flexible tactile actuator based on microstructured dielectric elastomer,” Appl. Phys. Lett. 2018, 112, 061902.
[34] W. Chen, Z. Zhu, “Flexible Actuators, Handbook of Smart Textiles,” January 2015, pp.381-410
[35] R. Shankar, T.K. Ghoshcd, R.J. Spontak (2007), “Dielectric elastomers as next-generation polymeric actuators,” Soft Matter, 3: 1116–1129.
[36] T. Mirfakhrai, J.D.W. Madden, R.H. Baughman, “Polymer artificial muscles,” Materials today, 2007,10:30-38.
[37] KEMET, Piezoelectric Haptic Modules – Film Flex Assembled Actuators: https://content.kemet.com/datasheets/KEM_P0106_FFAA.pdf

Jump to section

4. SUMMARY AND CONCLUSIONS

  • 1. HAPTIC SENSORS INTRODUCTION
  • 2. KEMER ACTUATOR DESIGN & INTEGRATION
  • 3. BUTTON SHELL
  • 4. SUMMARY AND CONCLUSIONS
Page 4 of 4
Previous 1234 Next
Source: EPCI

Related Posts

The RFID module that can be embedded into tires that Murata codeveloped with Michelin
Applications e-Blog

RFID Modules Embedded into Tires; Murata Story

29.7.2022
38
Applications e-Blog

Thermistor-Based Temperature Sensing System Explained

27.7.2022
79
Applications e-Blog

Resistors for EVs and Automotive

27.7.2022
63

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Archive

2022
2021
2020
2019
2018
2017

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.