• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Thermoreflectance Thermal Imaging as thermal characterization technique for components

21.9.2018

Flex Suppressor Explained and its Applications

24.3.2023

Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

23.3.2023

Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

23.3.2023

Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

21.3.2023

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

20.3.2023

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

20.3.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Flex Suppressor Explained and its Applications

    Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

    Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

    Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Flex Suppressor Explained and its Applications

    Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

    Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

    Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Thermoreflectance Thermal Imaging as thermal characterization technique for components

21.9.2018
Reading Time: 5 mins read
0 0
0
SHARES
202
VIEWS

RelatedPosts

Flex Suppressor Explained and its Applications

Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

Source: Alter Technologies article

Thermal image of components and its temperature map can be used for failure analyses, thermal process transients, or study of new materials. See more details in technical article published by Alter Technologies.

Temperature gradient in integrated circuits

Submicrometric-nanometric objects nowadays present in the design of integrated circuits induce singular heat transport phenomena leading to the formation of hot-spots or strong temperature gradients at specific local points, which compromises the suitable operation and reliability of microelectronic systems, and can potentially decrease the lifetime. The typical length of such singularities can reach the micro and submicronic scale. Hence temperature gradient over such systems has to characterized by advanced thermography instruments with high spatial resolution.

Why TTI?

Thermoreflectance Thermal Imaging (TTI) is a microscopy technique that provides temperature gradient contrast by analyzing the optical reflectance of the inspected surfaces. Amongst others TTI is employed to:

  • 2D thermal mapping.
  • Failure analyses and testing of microelectronic devices
  • The visualization of high-speed thermal transients
  • to study the implementation of innovative materials.

Main characteristics and advantages of the technique are:

  • Non-contact character.
  • High spatial resolution (micron and submicrometric), limited by the diffraction limit.
  • Temporal resolutions ~ 100µs.
  • Wide range temperature detection.

How it works?

TTI exploits of the linear effect that the temperature has on the surface reflectivity (Eq. 1).

Thermoreflectance Thermal Imaging

Change of the intensity (reflectivity) due to the temperature

As illustrated is the figure, when the sample is irradiated the intensity of the reflected beam depends on the local temperature of the irradiated zone. Thus hot spots, as the red square in the figure, increase the intensity of the reflected beam. Therefore, the accurate analysis of the reflected beam at the selected areas provides a thermal map of the device surface.

Practical Applications:

This mapping technique provides useful information about the power dissipation profile and hot spots related to the design of microelectronics devices. Besides it is also used for the early detection of design, manufacturing or material defects in microelectronics systems.

Thermoreflectance Thermal Imaging

Appl Phys., 2006; 39: 4153-4166

Optical and thermal image of heating resistor

The figure illustrates the compare an optical and a thermal image of a five broad polysilicon resistive stripes (heaters). Thanks to this technique it is possible to obtain the temperature map placed at the right of the image. This image results from an accumulation over 200 heating periods and a total acquisition time of 1 min in practice.

To illustrate the high spatial resolution and the detection of micrometric hot spots the following image also shows the thermal analysis of high power semiconductor laser bars. In this case it is clearly observed a micrometric hot spot at the face of one emitter (x = 225µm). This permitted the early detection of the ongoing mirror degradation, which eventually leads to catastrophic optical mirror damage failure.

Thermoreflectance Thermal Imaging

Appl Phys., 2018; 51: 013001

Thermal imaging of an emitter laser bar

The spatial and temperature resolutions and sensitivity reached by thermoreflectance techniques are excellent, however the accuracy of the absolute temperature readings is more difficult to evaluate due to the lack of comparable thermal techniques with submicrometric spatial resolution. Therefore, major applications of the technique on the microelectronics field, involves analyzing the relative temperature gradients on the surface devices and similar studies such as thermal mapping applications, thermal transport studies and hot spots analyses.

On the other hand, thanks to the high time resolution, ITT is also used for transient thermal imaging in switching devices or other systems under pulsed operation. This character is normally used to identify buried defects or help to extract the thermal resistance/capacitance network in the device, surrounding regions in the substrate and the package.

Thermoreflectance Thermal Imaging

Proceeding 26th IEEE SEMI-THERM Symposium 978-1-4244-6460-9/10

Time domain thermoreflectance imaging of a gold heater

The figure show quick heat diffusion in the device metal on short and long time scale thermal imaging of a 100 micron integrated gold heater using pulsed boxcar averaging. The figure also illustrates how the technique is used to study the transitory heat transmission from the sample to other adjacent components.

Related Posts

Circuit Protection Devices

Flex Suppressor Explained and its Applications

24.3.2023
5
Aerospace & Defence

Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

23.3.2023
30
Market & Supply Chain

Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

23.3.2023
42

Upcoming Events

Mar 29
15:00 - 16:00 EEST

Supercapacitors vs. Batteries in Engine Starting

Mar 29
17:00 - 18:00 CEST

Practical LLC Transformer Design Methodology

Apr 3
April 3 @ 12:00 - April 4 @ 14:00 CEST

Microelectronic Packaging Failure Modes and Analysis

View Calendar

Popular Posts

  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Inductors and RF Chokes Basics

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.