• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Titanium Materials as Novel Electrodes in Sodium Ion Supercapacitors

20.6.2023

Snubber Capacitors in Power Electronics

27.9.2023

TAIYO YUDEN Expands Lineup of Multilayer Metal Power Inductors

26.9.2023

Bourns Releases New High Energy Gas Discharge Tubes

26.9.2023

Würth Elektronik Extends its Application and Industry Guide for Easy Navigation to Suitable Circuits and Components

26.9.2023

Designing a Small Integrated 500W LLC Transformer

26.9.2023

KYOCERA AVX Earned a Platinum 2022 TTI Asia Supplier Excellence Award

26.9.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Snubber Capacitors in Power Electronics

    TAIYO YUDEN Expands Lineup of Multilayer Metal Power Inductors

    Bourns Releases New High Energy Gas Discharge Tubes

    Würth Elektronik Extends its Application and Industry Guide for Easy Navigation to Suitable Circuits and Components

    Designing a Small Integrated 500W LLC Transformer

    KYOCERA AVX Earned a Platinum 2022 TTI Asia Supplier Excellence Award

    Murata Completes New MLCC Factory in Thailand to Satisfy Smartphone and EV Market Needs

    Charging/Discharging of Linear andNon-linear Capacitors

    How to Select Inductor For Switching Power Supply

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Charging/Discharging of Linear andNon-linear Capacitors

    How to Select Inductor For Switching Power Supply

    Oscillators Integration, Selection Guide and Design In

    Input Capacitor Selection for Power Supplies – Part 3: Electrolytic Capacitors

    Input Capacitor Selection for Power Supplies Part 2 – Ceramic Capacitors

    Input Capacitor Selection for Power Supplies Video (Part 1)

    Vishay Webinar: Components Selection for Solar Panel Systems

    Capacitors Basics: Decoupling

    Totem Pole PFC Design for E-Mobility; Microchip and WE Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Snubber Capacitors in Power Electronics

    TAIYO YUDEN Expands Lineup of Multilayer Metal Power Inductors

    Bourns Releases New High Energy Gas Discharge Tubes

    Würth Elektronik Extends its Application and Industry Guide for Easy Navigation to Suitable Circuits and Components

    Designing a Small Integrated 500W LLC Transformer

    KYOCERA AVX Earned a Platinum 2022 TTI Asia Supplier Excellence Award

    Murata Completes New MLCC Factory in Thailand to Satisfy Smartphone and EV Market Needs

    Charging/Discharging of Linear andNon-linear Capacitors

    How to Select Inductor For Switching Power Supply

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Charging/Discharging of Linear andNon-linear Capacitors

    How to Select Inductor For Switching Power Supply

    Oscillators Integration, Selection Guide and Design In

    Input Capacitor Selection for Power Supplies – Part 3: Electrolytic Capacitors

    Input Capacitor Selection for Power Supplies Part 2 – Ceramic Capacitors

    Input Capacitor Selection for Power Supplies Video (Part 1)

    Vishay Webinar: Components Selection for Solar Panel Systems

    Capacitors Basics: Decoupling

    Totem Pole PFC Design for E-Mobility; Microchip and WE Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Titanium Materials as Novel Electrodes in Sodium Ion Supercapacitors

20.6.2023
Reading Time: 5 mins read
A A
60
VIEWS

Sodium ion supercapacitors (SICs) are among the most sought-after energy storage devices due to their characteristic high-power density together with long cycle life. Researchers from Nigeria investigates the emerging use of titanium-based materials as electrode component in sodium ion supercapacitors.

Sodium ion capacitor technology is trending but there are some challenges offered by the existing electrode materials. The transition metal compounds are widely explored as active electrode materials for SICs and titanium-based materials seem to exhibit outstanding potentials.

RelatedPosts

Snubber Capacitors in Power Electronics

TAIYO YUDEN Expands Lineup of Multilayer Metal Power Inductors

Bourns Releases New High Energy Gas Discharge Tubes

The high theoretical capacity, excellent electronic conductivity, long cycle life, and favorable sodium ion diffusion characteristics are some of the properties offered by titanium-based materials which qualify them as high-quality electrode materials. This work is pertinent as it guides the creation and selection of unconditional electrode materials for upcoming energy technologies.

In recent times, researchers are focusing lately on different techniques that will improve the turnout of the electrode electrochemical performance of supercapacitor cells. The idea is to, develop an efficient, affordable and environmentally friendly high-performance supercapacitors electrode materials using naturally bountiful resources/materials.

The interest in sodium ion capacitors is because sodium is the sixth most plentiful elements across the universe and its resources, like seawater, are inexpensive. There are reports on sodium ion capacitors, which uses sodium ions as their positive charge carrier and have been successful as energy storage technologies. The capacity of sodium ion capacitors to efficiently include both the substantial energy density of rechargeable batteries as well as the double-electric-layer capacitors high-power density is another interesting feature of this technology. This can be linked to the hybrid capacitors’ reversible anion adsorption/desorption together with a reversible Na ion insertion/desorption taking place on the cathode surface and on the anode respectively, as its charge storage methods. Furthermore, the sodium ion capacitors exhibit a greater energy density value than contemporary supercapacitor due to the battery-type anode’s faradaic response and higher power densities than batteries as a result of the cathodic capacitive reaction.

In spite of the fact that great efforts have been made to design workable SICs that has consistent cycle performance, high energy/power density, yet success relating to this area is still to be maximally achieved. There is difficulty of rapidly storing significant numbers of Na ions in a stable and reversible manner between a fast non-Faraday anode and a slow-moving Faraday anode. There is also no accessible and affordable anode that can bridge the kinetic mismatch and overcome the capacitive cathode, except through abridging the length of the Na+ diffusion while also through rational electrode fabrication, speed up Na+ transport.

In view of this proposed solution to the major challenge of SICs, several metal oxide composite materials, to a very large extent the materials based on Ti have been effectively investigated as a candidate for SICs electrode materials. This application is majorly as a result of Na+ been able to be inserted reversibly into the anchor design along with the Ti4+/Ti3+ redox reaction. As one of the rock-forming components, broadly dispersed within the earth’s crust, that is steady and nontoxic, the titanium-based compounds from reports show fabulous sodium storage performance and capacity execution. They could as a result appear to be guaranteed as high-performance electrodes for practical batteries and capacitors of sodium ion systems.

The development of appropriate anode materials is critical to the overall performance and viability of sodium-ion capacitors. Anode materials have an important role in determining the performance of SICs. The ideal anode material should have high specific capacity, good rate capability, long cycle life, low cost, and environmental sustainability. Among the various anode materials, titanium-based compounds have emerged as promising candidates for the anode materials due to their unique properties, including;

  1. Titanium being abundant and cost-effective, making it readily available for anode materials
  2. Ti-based materials exhibit good structural stability, contributing to their long cycle life
  3. Additionally, Ti-based compounds, such as TiO2, TiS2, and TiNb2O7, offer a wide range of options for optimizing performance
  4. Ti-based materials typically exhibit low operating voltages [53,54], contributing to the overall safety and energy efficiency of SICs
  5. Finally, titanium-based materials are environmentally friendly and do not pose any significant environmental hazards, making them a sustainable alternative to other anode materials that may have toxic or hazardous effects

Summary

Titanium-based materials have emerged as prospective electrode materials in sodium-ion capacitors due to their high conductivity, excellent mechanical properties, and ability to intercalate sodium ions. These materials have high-rate performance, excellent specific capacitance, with cycling stability, the plentitude of titanium in the Earth’s crust and its cheap cost make it an attractive alternative to other transition metal compounds used in electrode materials.

While there is still a need for further research to upgrade these materials conductivity and specific capacity, one other major advantage of using titanium-based materials is their ability to accommodate the large sodium ions in their crystal structure, which is necessary for high-capacity storage of sodium ions. The improvement of large-scale energy storage systems especially for sodium ion capacitors could be achieved when excellent electrode materials are obtained. The surface engineering, doping and composite formation of titanium based materials is trending and may circumvent the current challenges with fabricating electrode materials for SICs.

Read the full paper:

  • Titanium materials as novel electrodes in sodium ion capacitors
  • Author: Edwin U. Onoh,Elias E. Elemike,I.S. Ike,Emeka E. Oguzie
  • Publication: Journal of Energy Storage
  • Publisher: Elsevier
  • https://doi.org/10.1016/j.est.2023.108061
Source: Science Direct

Related Posts

Capacitors

Snubber Capacitors in Power Electronics

27.9.2023
25
Capacitors

Würth Elektronik Extends its Application and Industry Guide for Easy Navigation to Suitable Circuits and Components

26.9.2023
14
Market & Supply Chain

Murata Completes New MLCC Factory in Thailand to Satisfy Smartphone and EV Market Needs

26.9.2023
28

Upcoming Events

Sep 26
September 26 @ 12:00 - September 28 @ 14:00 EDT

Microwave Packaging Technology

Sep 28
11:00 - 12:00 CDT

Inductor Basics – Selecting Parts by Core Material and Shape

Oct 3
October 3 @ 12:00 - October 5 @ 14:00 EDT

Design and Test of Non-Hermetic Microelectronic

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • YAGEO’s Role in Powering the AI Revolution

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Archive

2023
2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.