• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Using and selecting COTS components for space applications

18.4.2017

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

20.3.2023

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

20.3.2023

Flying Capacitors Explained

17.3.2023

TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

16.3.2023

ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

16.3.2023

Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

15.3.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    TDK Extends Range of Industrial Single Pair Ethernet (SPE) Inductors

    Premo Unveils New series of 11kW 3-Phase On-Board Charger Transformers

    TAIYO YUDEN Releases 150C Automotive Power Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    TDK Extends Range of Industrial Single Pair Ethernet (SPE) Inductors

    Premo Unveils New series of 11kW 3-Phase On-Board Charger Transformers

    TAIYO YUDEN Releases 150C Automotive Power Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Using and selecting COTS components for space applications

18.4.2017
Reading Time: 4 mins read
0 0
0
SHARES
252
VIEWS

source: EDN article

Rajan Bedi -April 13, 2017. For some spacecraft manufacturers, the use of commercial off-the-shelf (COTS) parts is the only option to meet the performance and cost needs of a mission. For many satellite OEMs, the price and long lead-times of fully-qualified components is simply unaffordable. Today, many COTS devices are operating successfully in-orbit and this article discusses their use and selection for space applications.

CMOS scaling, epitaxial fabrication, the use of shallow trench isolation together with TMR HDL coding, SEU mitigation, and sensitivity classification of the configuration bitstream has allowed some ultra deep-submicron, SRAM-based COTS FPGAs to be used for low-dose, three to five-year LEO missions.

Today, several COTS flash-based FPGAs are operating successfully on-board satellites with OEMs adding EDAC and TMR to increase reliability. Their configuration memory is SEU immune and devices can be re-programmed in-orbit.

The use of COTS components must be an integrated part of the complete design process: from initial parts selection and an assessment of their suitability for use in space, how devices are handled and stored once they arrive in goods-in, and hardware design which reflects system reliability, e.g. prototyping early in the development cycle with burn-in can help weed out infant mortality failures, allowing for the use of more reliable components in their normal operating phase.

To achieve mission reliability, the location of COTS parts and sub-systems within the overall build is important and spacecraft modelling software such as TRAD’s FASTRAD can help identify areas of the satellite structure that can offer improved levels of shielding from radiation. OMERE can be freely downloaded to predict the space environment for your mission and the ANGEL software can assist to evaluate the impact of atmospheric neutrons on your space electronics. When using COTS components, it’s not devices which are being qualified but an assurance of your total engineering philosophy!

The selection of a COTS part is as much about how a component is used as the individual device itself. For example, I am currently using very successfully a fully-qualified, un-hardened DAC which was never intended for satellite applications for 15 year missions. The fabrication technology is BiCMOS, in fact, SiGe bipolar and SOI CMOS. From a process radiation hardness perspective, that’s a good start! The supplier told me that he suspected the section of the micro-architecture which synchronises the in-coming digital data was soft and I recently de-risked the DAC avoiding this timing path. The outcome is that the maximum sampling speed for space applications is less than that available for commercial users, but still high enough to satisfy all of my satellite customers. For component selection and risk assessment, using a COTS in this way is acceptable.


Figure 1 COTS DAC can be re-used in a way suitable for space applications.

Today, the commercial versions of some space-grade components contain identical die as the fully-qualified version or have slightly different die but are still fabricated on the same hardened process. This information isn’t always shared and Spacechips keeps a database of such parts to help satellite OEMs select low-cost COTS devices. The number of requests received has quadrupled in the last 18 months especially from manufacturers of ‘new space’ LEO constellations.

Most COTS parts have a plastic package which can outgas volatile materials that condense onto sensors, radiators and solar cells. Offgassing is exacerbated in the vacuum of outer space and this risk needs to be assessed on an individual mission basis. Placing the parts in a sealed (hermetic) box is one solution to limit outgassing.

Some silicon vendors offer an enhanced plastic option which are parts assured over an extended temperature range, e.g. from −55 to +125°C, where testing and characterisation accounts for glass transition effects and thermal expansion coefficients. Components can also be batch managed and typically assembled using a controlled baseline, i.e. no variation between foundries, lots, and wafers, all of which can potentially modify the hardness of components.

The above safeguards and improved traceability are very good for the space industry as changes to the fabrication technology and/or die shrink have been known to alter the radiation hardness of COTS parts. The enhanced plastic option differs between silicon vendors and it’s important that you check with your supplier as to what assurances are being offered. Many manufacturers will not guarantee the use of their COTS components for space applications, nor accept any liability.

Personally, I don’t like the marketing phrase enhanced plastic; it confuses me and implies there is something special or unique about the chemistry of the material which makes it advantageous for space applications. There’s not, and given the huge interest in the use of COTS, it would be helpful for the space industry to see consistency between the various silicon vendors. With this is mind, I’d like to propose an alternative term for such components: controlled process plastic.

Another option for you to consider is that some suppliers can up-screen COTS parts to a higher level of reliability and offer QCOTS or COTS+ components. Additional tests are carried out to address known failure mechanisms for plastic parts to identify and eliminate rejects. Recent discussions with some traditional semiconductor vendors suggest they will consider requests on a case-by-case basis and there may be some MOQ requirements. Likewise for users, there are costs associated with each assessment and a typical up-screening flow can include DPA, temperature cycling and tests for humidity, burn-in, electrical functionality, ESD, outgassing, and C-SAM to check for delamination. Formal standards exist for each of these and some are carried out on the complete lot, whereas destructive tests such as radiation testing are performed on a small sample.

Compared to fully-qualified parts, using and selecting COTS components requires careful risk assessment and their operation and/or specification may have to be modified or de-rated to meet a mission’s reliability needs. If this process is managed correctly, it is certainly possible to successfully deliver space electronics at lower cost and with shorter lead times.

RelatedPosts

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

Flying Capacitors Explained

source: EDN article

Rajan Bedi -April 13, 2017. For some spacecraft manufacturers, the use of commercial off-the-shelf (COTS) parts is the only option to meet the performance and cost needs of a mission. For many satellite OEMs, the price and long lead-times of fully-qualified components is simply unaffordable. Today, many COTS devices are operating successfully in-orbit and this article discusses their use and selection for space applications.

CMOS scaling, epitaxial fabrication, the use of shallow trench isolation together with TMR HDL coding, SEU mitigation, and sensitivity classification of the configuration bitstream has allowed some ultra deep-submicron, SRAM-based COTS FPGAs to be used for low-dose, three to five-year LEO missions.

Today, several COTS flash-based FPGAs are operating successfully on-board satellites with OEMs adding EDAC and TMR to increase reliability. Their configuration memory is SEU immune and devices can be re-programmed in-orbit.

The use of COTS components must be an integrated part of the complete design process: from initial parts selection and an assessment of their suitability for use in space, how devices are handled and stored once they arrive in goods-in, and hardware design which reflects system reliability, e.g. prototyping early in the development cycle with burn-in can help weed out infant mortality failures, allowing for the use of more reliable components in their normal operating phase.

To achieve mission reliability, the location of COTS parts and sub-systems within the overall build is important and spacecraft modelling software such as TRAD’s FASTRAD can help identify areas of the satellite structure that can offer improved levels of shielding from radiation. OMERE can be freely downloaded to predict the space environment for your mission and the ANGEL software can assist to evaluate the impact of atmospheric neutrons on your space electronics. When using COTS components, it’s not devices which are being qualified but an assurance of your total engineering philosophy!

The selection of a COTS part is as much about how a component is used as the individual device itself. For example, I am currently using very successfully a fully-qualified, un-hardened DAC which was never intended for satellite applications for 15 year missions. The fabrication technology is BiCMOS, in fact, SiGe bipolar and SOI CMOS. From a process radiation hardness perspective, that’s a good start! The supplier told me that he suspected the section of the micro-architecture which synchronises the in-coming digital data was soft and I recently de-risked the DAC avoiding this timing path. The outcome is that the maximum sampling speed for space applications is less than that available for commercial users, but still high enough to satisfy all of my satellite customers. For component selection and risk assessment, using a COTS in this way is acceptable.


Figure 1 COTS DAC can be re-used in a way suitable for space applications.

Today, the commercial versions of some space-grade components contain identical die as the fully-qualified version or have slightly different die but are still fabricated on the same hardened process. This information isn’t always shared and Spacechips keeps a database of such parts to help satellite OEMs select low-cost COTS devices. The number of requests received has quadrupled in the last 18 months especially from manufacturers of ‘new space’ LEO constellations.

Most COTS parts have a plastic package which can outgas volatile materials that condense onto sensors, radiators and solar cells. Offgassing is exacerbated in the vacuum of outer space and this risk needs to be assessed on an individual mission basis. Placing the parts in a sealed (hermetic) box is one solution to limit outgassing.

Some silicon vendors offer an enhanced plastic option which are parts assured over an extended temperature range, e.g. from −55 to +125°C, where testing and characterisation accounts for glass transition effects and thermal expansion coefficients. Components can also be batch managed and typically assembled using a controlled baseline, i.e. no variation between foundries, lots, and wafers, all of which can potentially modify the hardness of components.

The above safeguards and improved traceability are very good for the space industry as changes to the fabrication technology and/or die shrink have been known to alter the radiation hardness of COTS parts. The enhanced plastic option differs between silicon vendors and it’s important that you check with your supplier as to what assurances are being offered. Many manufacturers will not guarantee the use of their COTS components for space applications, nor accept any liability.

Personally, I don’t like the marketing phrase enhanced plastic; it confuses me and implies there is something special or unique about the chemistry of the material which makes it advantageous for space applications. There’s not, and given the huge interest in the use of COTS, it would be helpful for the space industry to see consistency between the various silicon vendors. With this is mind, I’d like to propose an alternative term for such components: controlled process plastic.

Another option for you to consider is that some suppliers can up-screen COTS parts to a higher level of reliability and offer QCOTS or COTS+ components. Additional tests are carried out to address known failure mechanisms for plastic parts to identify and eliminate rejects. Recent discussions with some traditional semiconductor vendors suggest they will consider requests on a case-by-case basis and there may be some MOQ requirements. Likewise for users, there are costs associated with each assessment and a typical up-screening flow can include DPA, temperature cycling and tests for humidity, burn-in, electrical functionality, ESD, outgassing, and C-SAM to check for delamination. Formal standards exist for each of these and some are carried out on the complete lot, whereas destructive tests such as radiation testing are performed on a small sample.

Compared to fully-qualified parts, using and selecting COTS components requires careful risk assessment and their operation and/or specification may have to be modified or de-rated to meet a mission’s reliability needs. If this process is managed correctly, it is certainly possible to successfully deliver space electronics at lower cost and with shorter lead times.

Related Posts

Capacitors

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

20.3.2023
5
Market & Supply Chain

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

20.3.2023
3
Market & Supply Chain

ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

16.3.2023
71

Upcoming Events

Mar 20
March 19 - March 23

APEC 2023

Mar 22
14:00 - 15:00 CET

Parasitic Components in Power Converters – Fundamentals and Measurements Rohde & Schwarz Webinar

Apr 3
April 3 @ 12:00 - April 4 @ 14:00 CEST

Microelectronic Packaging Failure Modes and Analysis

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.