• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Wide Bandgap Materials: The Future of High Power Density, High Efficiency Circuits

5.12.2019

TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

16.5.2022

Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

16.5.2022

European Electronic Components Distribution Under Strong Demand and Allocation in Q1 2022

16.5.2022

Tecate Releases Small-Cell 3V Supercapacitors

16.5.2022
  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

    Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

    European Electronic Components Distribution Under Strong Demand and Allocation in Q1 2022

    Tecate Releases Small-Cell 3V Supercapacitors

    3D Systems to Deliver 3D Printed RF Components for Satellite Applications

    Kyocera to Build its Largest Plant in Japan for Crystals and Semiconductor Packages

    TDK to Build New Automotive MLCC Production Plant in Japan

    Supercapacitors Assist Diesel Locomotives Start At Winter Conditions

    Bourns Releases High Current Shielded Power Inductor in Compact Size

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Flat Wire Inductors for Electrical Cars; WE Webinar

    Ferrite Filter Features and Selection Guide; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

    Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

    European Electronic Components Distribution Under Strong Demand and Allocation in Q1 2022

    Tecate Releases Small-Cell 3V Supercapacitors

    3D Systems to Deliver 3D Printed RF Components for Satellite Applications

    Kyocera to Build its Largest Plant in Japan for Crystals and Semiconductor Packages

    TDK to Build New Automotive MLCC Production Plant in Japan

    Supercapacitors Assist Diesel Locomotives Start At Winter Conditions

    Bourns Releases High Current Shielded Power Inductor in Compact Size

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Flat Wire Inductors for Electrical Cars; WE Webinar

    Ferrite Filter Features and Selection Guide; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Wide Bandgap Materials: The Future of High Power Density, High Efficiency Circuits

5.12.2019
Reading Time: 5 mins read
0 0
0
SHARES
976
VIEWS

Philip Lessner, CTO and Chief Scientist at KEMET Electronics published overview of upcoming wide bandgap materials and how his company has been responding to these trends and requirements.

Silicon has been the leading semiconductor material for more than 50 years, and has been one of the primary building blocks of the modern computing and power electronics industries. However, the dominance of silicon in power semiconductor manufacturing may be waning as the demand grows for new devices with greater power density, energy efficiency, and heat resistance. As electronics shrink and power hungry applications like AI, VR, and vehicle electrification proliferate, these characteristics are especially important.

RelatedPosts

TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

European Electronic Components Distribution Under Strong Demand and Allocation in Q1 2022

In power semiconductor innovation, where do we go from here? At least in part, the answer is a move to devices built on silicon carbide (SiC) and gallium nitride (GaN), both wide bandgap semiconductors. Bandgap refers to the energy gap between the top of the valence band and the bottom of the conduction band in semiconductor materials. This bandgap enables transistors to switch currents on and off to achieve electrical functions, and the wider the bandgap, the greater the material’s ability to operate efficiently at higher temperatures, higher voltages, and in a smaller footprint.

While KEMET doesn’t manufacture SiC or GaN semiconductors, we consider ourselves leaders in making the passive components that support wide bandgap semiconductors for power conversion circuits.

Why wide bandgap materials?

In real world applications, the primary benefit of moving to wide bandgap semiconductors made from SiC or GaN is increased efficiency of power conversion. Wide bandgap semiconductors provide between three and 10 percent higher power conversion efficiency than standard silicon emiconductors, which can be a critical power savings for battery-based applications such as electric vehicles and high power applications like server farms.

The ability of wide bandgap semiconductors to operate at high temperatures also has important consequences. Not only can they be used in higher heat situations, wide bandgap semiconductors require less cooling overall, reducing the space and expense of cooling components in the power converter. In addition, they can be operated at higher frequencies than silicon, with the implication that supporting componentry like capacitors can be smaller. In short, wide bandgap materials enable development of devices that are smaller, faster and more efficient, and able to withstand higher temperatures and voltages than silicon-based options.

GaN is used primarily in lower voltage applications, for power supplies under 500 volts or so. For instance, Anker has recently released an ultra-compact laptop and phone charger based on GaN technologies that is the size of a golf ball, with 30W output. The charger enables high-speed charging of Apple mobile and all USB-C devices, with the ability to charge iPhone X up to 50 percent in just 30 minutes. By replacing silicon with GaN, Anker was able to make charging faster while also dramatically shrinking the size of the physical charger. GaN has been used for radio frequency applications for years, but its future probably lies in miniaturization of power supplies for use cases where space and efficiency are at a premium, such as aerospace.

SiC is primarily used in higher voltage applications, from 600 to 1200 volts, and is valuable for applications such as electric vehicles, solar inverters, windmills, and other industrial and transportation use cases. SiC provides higher switching frequencies and significantly higher thermal conductivity than silicon, enabling low loss, high efficiency device operations in temperatures to 150° C and potentially even higher. Because cooling and thermal management requirements for SiC are also reduced, chip designers can also take advantage of lower system costs and smaller form factors. I foresee SiC becoming widely adopted in the electric vehicle space, as greater efficiency of power conversion can increase the range of the vehicle.

KEMET and wide bandgap technologies

KEMET is a leader in making supporting components to meet the requirements of SiC and GaN power conversion technologies. Perhaps the best example is KEMET’s KC-LINKTM surface mount capacitors, which are designed to meet the demands of fast-switching wide bandgap semiconductors that operate at high voltages, temperatures, and frequencies. These ceramic capacitors can be mounted close to SiC and GaN semiconductors in high power density applications that require minimal cooling. KC-LINK capacitors are also capable of very high frequency operations, making them a perfect match for SiC circuits. These capacitors can be stacked for higher capacitance using KEMET’s patented KONNEKT technology.

In addition to these ceramic capacitors, KEMET is also working on higher temperature film capacitors that are designed to work at the increased temperatures of wide bandgap semiconductors.

To learn more about KC-LINK capacitors, read the press release KEMET’s New KC-LINK Capacitor Series Offers Industry Leading Performance for Fast Switching Wide Bandgap Semiconductor Applications. Rather watch a video? Click here and our engineers will take you into our KAIC (KEMET Application Intelligence Center) Lab to show you how KC-LINK capacitors react under pressure, or follow this link to view a digital datasheet.  

KEMET also offers a range of magnetic components that support wide bandgap semiconductors. The newly released METCOM SMD inductor range addresses the increasing power supply density and efficiency challenges introduced by SiC and GaN materials. When it comes to size, automotive grade reliability and performance, the METCOM inductors offer very low losses in a small form factor, and are capable of operating at 155°C. METCOM are advanced metal composite inductors that can be used for both power applications as well as EMI filtering applications.

As an example of how KEMET components can support development of wide bandgap applications, we worked closely with engineers from Wolfspeed to develop a 3.3 kW high-frequency DC/DC converter using SiC MOSFETs as a power supply for telecom and server applications. The Wolfspeed engineers approached KEMET to provide the passive components for the power supply, specifically capacitors capable of withstanding higher temperatures and operating with low losses at high frequencies.

The innovative nature of the power supply design required that KEMET and Wolfspeed engineers work closely together to confirm specific technical details, some of which required additional measurements in the KEMET labs and further validation at Wolfspeed once we provided the necessary data. With close collaboration with KEMET, Wolfspeed was able to successfully demonstrate the superior performance of its new power supply based on SiC MOSFETs at frequencies up to 1 MHz, with a 50 percent volume and weight reduction of magnetic parts, and a peak efficiency of 96.5 percent.

Wide bandgap semiconductors offer significant potential for higher efficiency electronics in multiple application areas, but these new designs require careful and precise engineering to achieve successful and timely results.

Working closely with trusted fellow innovators in advanced electronics is highly recommended for newcomers to wide bandgap technologies. As our co-development with Wolfspeed demonstrates, KEMET offers extensive research facilities and laboratories to provide the customized data and materials characterization that engineers require for effective designs and development. KEMET ensures that its components are easy to design in to wide bandgap applications, because we go the extra distance to provide the data necessary to help ensure that designs are going to work according to spec and schedule.

featured image: SiC power supply, credit: Wolfspeed

Source: Philip Lessner Linked In Blog

Related Posts

Automotive

TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

16.5.2022
6
Capacitors

Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

16.5.2022
3
Aerospace & Defence

Tecate Releases Small-Cell 3V Supercapacitors

16.5.2022
8

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Introduction to Capacitor Based Power Factor Correction Circuits

    0 shares
    Share 0 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0

Newsletter Subscription

 

  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About

© 2021 EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© 2021 EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.