Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Releases Industry First Automotive SMD Y1 Safety Ceramic Capacitors

    Researchers Enhanced 2D Ferromagnets Performance

    Bourns Releases Two High Current Common Mode Choke Models

    Electronics Weekly Announcing Finalists for Elektra Awards 2025

    Exxelia Exhibit at Electronica India September 17–19, 2025

    Würth Elektronik Announces 2025 Digital WE Days Virtual Conference

    VINATech Unveils Hybrid Energy Storage System to Revolutionize Grid Stability and Power Delivery

    SCHURTER Releases High Performance EV-Fuse

    Panasonic Industry to Double Production of MEGTRON PCB Materials

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Releases Industry First Automotive SMD Y1 Safety Ceramic Capacitors

    Researchers Enhanced 2D Ferromagnets Performance

    Bourns Releases Two High Current Common Mode Choke Models

    Electronics Weekly Announcing Finalists for Elektra Awards 2025

    Exxelia Exhibit at Electronica India September 17–19, 2025

    Würth Elektronik Announces 2025 Digital WE Days Virtual Conference

    VINATech Unveils Hybrid Energy Storage System to Revolutionize Grid Stability and Power Delivery

    SCHURTER Releases High Performance EV-Fuse

    Panasonic Industry to Double Production of MEGTRON PCB Materials

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Zinc-ion Hybrid Capacitors with Ideal Anions in the Electrolyte Show Low Self-Discharge and Extra-Long Performance

16.11.2020
Reading Time: 3 mins read
A A

Metal-ion hybrid capacitors combine the properties of capacitors and batteries. One electrode uses the capacitive mechanism, the other the battery-type redox processes. Scientists have now scrutinized the role of anions in the electrolyte. The results reveal the importance of sulfate anions. Sulfate-based electrolytes gave zinc-ion hybrid capacitors outstanding performance and extra-long operability.

Capacitors can uptake and release an enormous amount of charge in a short time, whereas batteries can store a lot of energy in a small volume. To combine both properties, scientists are investigating hybrid electrochemical cells, which contain both capacitor- and battery-type electrodes. Among these cells, researchers have identified metal-ion hybrid capacitors as especially promising devices. Here, the positive electrode includes pseudocapacitive properties, which means it can also store energy in the manner of a battery, by intercalation of the metal ions, while the negative electrode is made of a redox-active metal.

RelatedPosts

Vishay Releases Industry First Automotive SMD Y1 Safety Ceramic Capacitors

Researchers Enhanced 2D Ferromagnets Performance

Bourns Releases Two High Current Common Mode Choke Models

However, their electrolyte has long been neglected, says Chunyi Zhi who is investigating battery materials together with his team at the City University of Hong Kong. The researchers believe the type of electrolyte anion affects the performance of the device. “Paying more attention to the introduction of appropriate anions can effectively improve the power and energy density of a capacitor,” they say.

The researchers focused their attention on zinc-ion capacitors. This cell type consists of a zinc metal anode and a cathode made of titanium nitride nanofibers. The nanofibers are robust, and their porous surface allows the electrolyte to infiltrate. The scientists argue that the electrolyte anions, when attached to the titanium nitride surface, make the material more conductive. Moreover, the adsorbed anions may directly contribute to the charging process. The charging of the hybrid capacitor involves the extraction of the intercalated zinc ions.

Schematic illustration of the difference of self-discharge behaviors of TiN-based supercapacitors with different electrolytes, the yellow, blue and red balloons represented SO42-, Cl-and Ac-, respectively. Source: Authors

Pseudocapacitive behavior and ion hybrid capacitors can improve the energy density of supercapacitors, but research has only considered the reaction of cations during the electrochemical process, leading to a flawed mechanistic understanding. Here, the effects of various anions carriers on the electrochemical behaviors of titanium nitride‐based zinc ion capacitor (Zn‐TiN capacitor) were explored. DFT calculations revealed the stable structure of TiN‐SO4 after adsorbed process, enabling SO42− participate in the electrochemical process and construct a two‐step adsorption and intercalation energy storage mechanism, improving the capacitance and anti‐self‐discharge ability of the Zn‐TiN capacitor, which delivered an ultrahigh capacitance of 489.8 F g−1 and retained 83.92 % of capacitance even after 500 h resting time. An energy storage system involving anions in the electrochemical process can improve capacitance and anti‐self‐discharge ability of ion hybrid capacitors.

Zhi and his colleagues compared the effects of three electrolyte anions: sulfate, acetate, and chloride. They looked at both their binding to the electrode surface and the performances of the electrochemical cells. It was a clear result.

The scientists reported that the sulfate anions stood out among the three anions. They observed that cells based on a zinc sulfate electrolyte performed best, and the sulfates bound stronger to the titanium nitride surface than the other anions. Moreover, sulfate-treated electrodes showed the lowest self-discharging. The authors attributed the findings to the electronic effects of sulfate. Its electron-pulling nature provides tight binding to the surface atoms and prevents the electrode from self-discharging, the authors concluded.

For a zinc-sulfate-based zinc-ion hybrid capacitor, the scientists reported high-performance operation for more than nine months. Moreover, these devices are flexible, which is especially useful for portable electronics. The scientists tested the device in an electronic watch and found excellent performance.

Journal Reference:

  1. Zhaodong Huang, Tairan Wang, Hao Song, Xinliang Li, Guojin Liang, Donghong Wang, Qi Yang, Ze Chen, Longtao Ma, Zhuoxin Liu, Biao Gao, Jun Fan, Chunyi Zhi. Effects of Anion Carriers on Capacitance and Self‐Discharge Behaviors of Zinc Ion Capacitors. Angewandte Chemie International Edition, 2020; DOI: 10.1002/anie.202012202

Related

Source: Science Daily

Recent Posts

Vishay Releases Industry First Automotive SMD Y1 Safety Ceramic Capacitors

17.9.2025
2

Researchers Enhanced 2D Ferromagnets Performance

16.9.2025
5

Electronics Weekly Announcing Finalists for Elektra Awards 2025

16.9.2025
6

Exxelia Exhibit at Electronica India September 17–19, 2025

15.9.2025
28

Würth Elektronik Announces 2025 Digital WE Days Virtual Conference

15.9.2025
11

VINATech Unveils Hybrid Energy Storage System to Revolutionize Grid Stability and Power Delivery

15.9.2025
18

5th PCNS Awards Outstanding Passive Component Papers

17.9.2025
61

TDK Releases Ultra-small PFC Capacitors

10.9.2025
35

KYOCERA AVX Releases Novel Mini BME Stacked Ceramic Capacitors

10.9.2025
28

Vishay Releases Class 1 Leaded High Voltage Ceramic Disc Capacitors

10.9.2025
23

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version