Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics Releases Components Library v25.0 for Keysight 

    How to design a 60W Flyback Transformer

    Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

    Murata Releases 008004 High-Frequency SMD Chip Inductor

    Wk 19 Electronics Supply Chain Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics Releases Components Library v25.0 for Keysight 

    How to design a 60W Flyback Transformer

    Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

    Murata Releases 008004 High-Frequency SMD Chip Inductor

    Wk 19 Electronics Supply Chain Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Panasonic Releases New Conductive Polymer Hybrid Aluminum Electrolytic Capacitor ZS Series

2.11.2018
Reading Time: 3 mins read
A A

Source: Panasonic product news

updated: Nov 11th

RelatedPosts

Modelithics Releases Components Library v25.0 for Keysight 

How to design a 60W Flyback Transformer

Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

ZS series of Conductive Polymer Hybrid Aluminum Electrolytic Capacitors have been commercialized which is suitable for HEV and EV driven by advanced electrically motorizing.Claimed to push the boundaries of the hybrid polymer electrolytic segment with higher capacitance and ripple current ratings.

The ZS-Series not only expands the capacitance range and doubles ripple current capability, it is also rated at 4,000 hours endurance at 125 degrees C. The ZS Series brings new case sizes, keeping the same footprint as earlier capacitors (10mm).

Panasonic has introduced hybrid capacitors that are 16mm in length with this addition to the capacitor portfolio, with the automotive sector in mind, the ZS-Series covers 25 to 63V, with a capacitance range covering 560 microF, an even lower ESR down to 11mOhm with ripple current of 4.0A rms.

As well as saving space, the lower ESR and higher ripple enhance filter and DC-link circuits in automotive control and powertrain applications. The hybrid conductive polymer capacitors are effective replacements for the difficult to source, and soon-to-be-phased out, larger MLCCs, in space-constrained or higher frequency circuits.

All the ZS-Series capacitors are RoHS- and REACH-compliant and also comply to AECQ-200.

Features of ZS Series

  • Large current : 2.5 times that of the conventional ZC Series
  • Ripple current value ZC 63V : 1400mA  ⇒ ZS 63V:3500mA
  • Large capacitance : 1.8 times that of the conventional ZC Series Capacitance ZC 63V : 82uF  ⇒ ZS 63V:150uF

Achieving a larger current and capacitance than conventional products with the same board area decreases the quantity of capacitors used and contributes to reductions in required board space and weight.

Φ10x10.2mmArrowΦ10x16.5mm
  •  High vibration-resistance (Vibration acceleration 30G compatible)
    Vibration acceleration resistance
Conventional terminal

Arrow

Auxiliary terminal
Conventional terminal                                                   Auxiliary terminal

Contributing to the elimination of customers’ need to take measures against vibration during mounting processes

Specification of ZS Series

Specification
Category temperature range -55 ℃ ~ 125 ℃
Rated voltage range 25 V.DC ~ 63 V.DC
Rated capacitance range 150 uF ~ 560 uF
Size Φ10×16.5 mm
Endurance 125 ℃ 4000 h
Damp heat 85℃ 85% 2000 h

Case study of ZS Series

● 48V system (Inverter Power Supply) Space saving of board48V system (Inverter Power Supply) Space saving of board

ZC Series arrow ZS Series
Item φ10 x 10.2 mm
63V.DC / 82 μF
φ10 x 16.5 mm
63V.DC / 150 μF
ZC Series ZS Series
quantity 21 pcs 9 pcs
Ripple current Total 29.4 A
(1.4 A x 21 pcs)
Total 31.5 A
(3.5 A x 9 pcs)
Mounting area 100% 43%

Related

Recent Posts

Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

12.5.2025
4

TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

9.5.2025
10

KYOCERA AVX Releases Compact High-Directivity Couplers

7.5.2025
21

Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

6.5.2025
68

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
52

Tariffs Crush Sales Sentiment in April 2025 ECST Results

5.5.2025
70

Solid State Polymer Multilayer Capacitors For High Temperature Application

2.5.2025
41

Graphene-Based BOSC Bank Of Supercapacitor Cells

2.5.2025
14

Hybrid Energy Storage System for Nanosatellite Applications

1.5.2025
9

COTS-Plus Bulk Tantalum Capacitor for LEO Flight Platforms

29.4.2025
38

Upcoming Events

May 14
11:00 - 12:00 CEST

Reliable RIGID.flex PCBs for Critical Applications – Made in Europe

May 14
17:00 - 17:30 CEST

Calculating Foil Winding Losses with AI

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version