Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Introduces High Current 80VDC Board-Mount EMI Filters

    Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Sumida Announces New DC Common Mode Choke Coil Series

    KYOCERA AVX Releases New 3dB Hybrid Couplers

    SCHURTER Unveils High Voltage Fuses for EV Applications

    YAGEO Releases First to Market 750V Aluminum Capacitors

    binder Introduces M9 Compact Circular Connector

    Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Introduces High Current 80VDC Board-Mount EMI Filters

    Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Sumida Announces New DC Common Mode Choke Coil Series

    KYOCERA AVX Releases New 3dB Hybrid Couplers

    SCHURTER Unveils High Voltage Fuses for EV Applications

    YAGEO Releases First to Market 750V Aluminum Capacitors

    binder Introduces M9 Compact Circular Connector

    Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Additive Manufacturing of Supercapacitors with Biopolymer Separator

3.10.2022
Reading Time: 4 mins read
A A

Additive layer-by-layer fabrication of a fully screen printed monolithic supercapacitor exhibiting performance comparable with supercapacitors prepared using lamination is reported by researchers from Tampere University in Finland in article published by Journal of Applied Electrochemistry.

A novel separator material improves the performance of the monolithic supercapacitor, is easily applicable using scalable processes such as screen and stencil printing, and is based on sustainable biomaterials. The additive monolithic manufacturing offers advantages for system integration and avoids the need of an additional alignment step as needed in the fabrication of laminated supercapacitors.

RelatedPosts

TDK Introduces High Current 80VDC Board-Mount EMI Filters

Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

Previously, the monolithically fabricated supercapacitors showed higher equivalent series resistance (ESR) and leakage current than the laminated ones. By using microfibrillated cellulose (MFC) and chitosan as separator materials ESR and leakage current were decreased. These disposable and non-toxic aqueous electrolyte supercapacitors are optimized for autonomous sensor systems, for example in Internet-of-Things (IoT) applications, with capacitance of 200–300 mF and ESR of about 10 Ω. The new composite separator material consisting of MFC and chitosan has good adhesion on the electrodes and the substrate, is easy to apply using printing and coating processes, and does not diffuse into the porous electrode.

In the near future, it is expected that there will be billions of devices which should all integrate and connect smoothly with the “Internet of Things” (IoT) in different services, for example smart homes, healthcare and industry automation. IoT devices and sensor networks need non-toxic and inexpensive ways to store energy. Supercapacitors are in many cases a better choice than batteries for managing the energy storage due to their safety, disposability and higher cycle life.

Supercapacitors store energy into the electrochemical double-layer at a highly porous electrode surface. The key elements of a supercapacitor are current collectors, electrodes, separator and electrolyte. Printed supercapacitors are usually manufactured by applying two electrodes on the current collectors separately, laminating the electrodes face-to-face while sandwiching the separator between them and applying the electrolyte before encapsulation.

We report here the monolithic fabrication of supercapacitors, by applying the films layer by layer on top of each other on the substrate. Monolithic fabrication can have advantages over the conventional lamination approach, both for system integration and for fabrication of series connected modules when higher voltage is needed. Previously reported monolithically fabricated aqueous supercapacitors showed higher equivalent series resistance (ESR) and higher leakage current to capacitance ratio than laminated ones. We have improved the performance by using a novel, bio-derived composite material as a separator, consisting of microfibrillated cellulose (MFC), also known as nanocellulose, and the polysaccharide chitosan.

Fig. 1
Schematic cross section and layout of the monolithic supercapacitor (a) and the laminated supercapacitor (b) and the layout of both the monolithic supercapacitor and the laminated supercapacitor (c), Courtesy of the authors

The use of MFC in supercapacitors has been reported previously. However, most of these reports are concerned with the use of MFC-based conductive materials for electrodes and current collectors. Other reports on MFC materials do not describe their application in supercapacitors but instead report the chemical properties of the material. MFC-based cellulose papers have also been used as separators in supercapacitors, but these devices were assembled using lamination. A monolithically fabricated supercapacitor has also been reported previously, although the size and the materials of the supercapacitors were different from the ones reported here.

The separator of the supercapacitors must be thin and electrochemically stable. It must have high ionic conductivity. On the other hand, the separator must prevent short circuit between the electrodes. The use of MFC as a separator material was previously reported by Tuukkanen et al.. This work is motivated by the previous work and extends it to easier and more consistent manufacturing and performance by forming a composite with the biopolymer chitosan.

Achievements and Conclusions

Monolithic supercapacitors have potential advantages for manufacturing and system integration, but have previously showed higher ESR and leakage current per capacitance than laminated devices. A novel bio-derived composite material made from chitosan and MFC was used as a printable separator in monolithic aqueous supercapacitors and was found to improve the electrical performance of the devices to a level comparable with laminated supercapacitors.

The ESR s is the same as measured for laminated components and the leakage current per capacitance is improved. The new material, CM5050, is easier to apply than chitosan and is thus advantageous from a manufacturing point of view. The correlation between leakage current and capacitance of the monolithic supercapacitors follows trends generally observed in supercapacitors.

We also fabricated a supercapacitor in which both electrodes and current collectors were manufactured by screen printing to further enhance the possibility of potential industrial fabrication.

Read the full paper at the link below

DOI https://doi.org/10.1007/s10800-020-01423-2

Related

Source: Journal of Applied Electrochemistry

Recent Posts

YAGEO Releases First to Market 750V Aluminum Capacitors

30.6.2025
33

Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

30.6.2025
16

Learn How Supercapacitors Enhance Power System in Knowles eBook

30.6.2025
12

TDK Releases Industry First 1uF 100V X7R MLCCs in 1608 Case

27.6.2025
17

YAGEO Extends Lifetime of its Aluminum SMD Chip Capacitors to 5500hrs at 125C/Ur

27.6.2025
19

Murata Releases Worlds First 10µF/50V Automotive MLCC in 0805 Size

26.6.2025
47

Advancements and Applications of Switch Capacitor Power Converters

25.6.2025
33

Samsung Delivers Silicon Capacitors to Marwell AI Systems

24.6.2025
62

Smolteks CNF MIM Capacitor Break 1 µF/mm²

19.6.2025
40

Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

19.6.2025
23

Upcoming Events

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version