• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Capacitor Losses (ESR, IMP, DF, Q), Series or Parallel Eq. Circuit ?

29.8.2022

Supercapacitors for Space Applications: Trends and Opportunities

3.1.2023

JX Nippon Mining and Metals Announces Participation in Tantalum Production at Mibra Mine in Brazil

30.12.2022

A Pitfall of Transformer-Based Isolated DC-DC Converter

30.12.2022

Best Wishes for 2023 from EPCI

29.12.2022

Kyocera Doubling its Investment into Electronic Components over the Three Years

29.12.2022

Leakage Models of Multi-Winding Transformer in LLC Converter

28.12.2022
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Supercapacitors for Space Applications: Trends and Opportunities

    JX Nippon Mining and Metals Announces Participation in Tantalum Production at Mibra Mine in Brazil

    A Pitfall of Transformer-Based Isolated DC-DC Converter

    Kyocera Doubling its Investment into Electronic Components over the Three Years

    Leakage Models of Multi-Winding Transformer in LLC Converter

    Murata is Looking for Partners to Develop Applications of its New Transparent and Bendable Conductive Film

    LLC Transformer Design for Power Converters

    Printed Resistors in a High Performance PCB System

    Transformer Leakage in LLC converters

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    A Pitfall of Transformer-Based Isolated DC-DC Converter

    Leakage Models of Multi-Winding Transformer in LLC Converter

    LLC Transformer Design for Power Converters

    Printed Resistors in a High Performance PCB System

    Transformer Characteristics Explained

    Variable Controlled Inductor in LLC Converter Application Example

    Vishay Presents Pulse Energy Calculator

    Magnetic Circuits LTSpice Modelling Part II.

    How to Design an Inductor; Frenetic Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Supercapacitors for Space Applications: Trends and Opportunities

    JX Nippon Mining and Metals Announces Participation in Tantalum Production at Mibra Mine in Brazil

    A Pitfall of Transformer-Based Isolated DC-DC Converter

    Kyocera Doubling its Investment into Electronic Components over the Three Years

    Leakage Models of Multi-Winding Transformer in LLC Converter

    Murata is Looking for Partners to Develop Applications of its New Transparent and Bendable Conductive Film

    LLC Transformer Design for Power Converters

    Printed Resistors in a High Performance PCB System

    Transformer Leakage in LLC converters

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    A Pitfall of Transformer-Based Isolated DC-DC Converter

    Leakage Models of Multi-Winding Transformer in LLC Converter

    LLC Transformer Design for Power Converters

    Printed Resistors in a High Performance PCB System

    Transformer Characteristics Explained

    Variable Controlled Inductor in LLC Converter Application Example

    Vishay Presents Pulse Energy Calculator

    Magnetic Circuits LTSpice Modelling Part II.

    How to Design an Inductor; Frenetic Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Capacitor Losses (ESR, IMP, DF, Q), Series or Parallel Eq. Circuit ?

29.8.2022
Reading Time: 15 mins read
0 0
0
SHARES
13.1k
VIEWS

This article explains capacitor losses (ESR, Impedance IMP, Dissipation Factor DF/ tanδ, Quality FactorQ) as the other basic key parameter of capacitors apart of capacitance, insulation resistance and DCL leakage current.

There are two types of losses:

RelatedPosts

Failure Analysis of Capacitors and Inductors

Variable Capacitors and Trimmers

Supercapacitors

  1. Resistive real losses – these are real losses caused by resistance of leads, electrodes, connections etc. During current flow these losses are dissipated by Joule heat. Usually (unless it is intended by designed) the effort is to minimize these losses for maximum efficiency and high power load ratings.
  2. Reactance imagine losses – these are losses caused by capacitive reactance and inductive reactance “stored” in the component that can be reverted back
Jump to section

1. Impedance IMP and ESR

  • 1. Impedance IMP and ESR
  • 2. Dissipation Factor (DF) / Tanδ and Q Value
  • 3. Series or Parallel ? Cs,Rs or Cp,Rp ? ESR or DF ?
  • 4. Losses versus Frequency

A capacitor creates in AC circuits a resistance, the capacitive reactance. There is also certain inductance in the capacitor. In AC circuits it produces an inductive reactance that tries to neutralize the capacitive one. Finally the capacitor has resistive losses. Together these three elements produce the impedance, Z.

If we apply an AC voltage over a capacitor its losses release heat. They can be regarded as a resistive part of the impedance, i.e., as resistive elements distributed in different parts of the component, e.g. in accordance with the equivalent circuit in Figure 1.

C3-16
Figure 1. Circuit diagram of a capacitor
  • C = Capacitance
  • IR = Insulation Resistance (IR>>Rs)
  • Rs = Series losses
  • L = Inductance in lead-in wires

Rs consists of resistance in lead-in wires, contact surfaces and metallized electrodes, where such elements occur, as well as dielectric losses. If we apply a DC voltage over the capacitor, the generator ”feels” a purely resistive loss dominated by the IR. But because of the high value of the IR the heat release will be negligible. Should we instead change over to an AC voltage and let the frequency rise the current will increase proportionally and eventually release a considerable heat in the Rs. If we transform the IR to a small series resistance and join it with the Rs we get a total series resistance called ESR (Equivalent Series Resistance, sometimes called Effective Series Resistance). The series impedance, Zs, in Figure 1. can be written:

C3-9aeq

As a root mean square value we obtain the formula:

C3-9beq

(Ω)……………………… [1]

The capacitive reactance, 1/ωC, in the formula above decreases with frequency to that level where the inductive reactance, L, takes over. It happens at the resonance frequency fo of the capacitor where 1/ωC = L. Above the resonance frequency the capacitor is inductive. Exactly at the resonance frequency remains of the impedance Z only the resistive ESR (Figure 2.). By determining the losses at the resonance frequency we gain accuracy. But there is a condition for this accuracy. We need to know the frequency dependence of the ESR which very much is conditioned by the dielectric material. In certain materials it is negligible, in others considerable.

C3-17
 Figure 2. The impedance diagram of a capacitor

The expression for capacitance in the formula for Zs above can be simplified to a series capacitance Cs. If C means the nominal capacitance then we obtain Cs as

C3-10eq

………………………… [2]

and

C3-11eq

………………………… [3]

The equivalent circuit diagram then looks like the one in Figure 3.

C3-18
Figure 3. The equivalent series circuit diagram of a capacitor. Valid at higher frequencies

Impedance around the resonance frequency

Figure 2. shows an example of the impedance diagram around the resonance frequency. We shall evolve the reasoning further.

Because of the approximations used during derivation of formula [2] it applies only far below the resonance frequency, f0. There, however it may cause discernible deviations from the true value. Already at 0.2 x f0 Cs will be approximately 4% greater than the nominal value C.

Often the expression for Cs is used when the frequency dependence of capacitance is shown in diagrams. This means that the capacitance quite contrary to physical and electrical laws starts rising at higher frequencies. The explanation accordingly is to be sought in errors in the measurement method.

Except for electrolytics and other high loss capacitors the impedance curve usually has the appearance of the one shown in Figure 4.

C3-19
Figure 4. The appearance of the impedance vs. frequency curve around the resonance frequency in low-loss capacitors

The sharp tip at the resonance frequency is typical for capacitors with comparatively small losses. In this frequency range the impedance contribution from the ESR is smaller than those of the capacitive and inductive reactances. When the decreasing capacitive reactance reaches the same magnitudes as those of the rising inductive reactance there will be an increasing influence from the latter. It reduces the capacitive reactance and eventually eliminates it. The curve bends down in a sharp tip. The bottom of the bend is determined by the ESR.

In capacitors with relatively high losses, for example electrolytics, the impedance curves reach and are influenced by these losses long before we get to the resonance frequency. A frequency dependent decrease in capacitance may also play a certain role in the frequency range. The impedance curve will deviate from the initial reactance curve and level out in a pliable bend on the ESR contribution, high above the point of intersection between the capacitive and inductive branch. The phenomenon is illustrated in Figure 5.

C3-20
Figure 5. The appearance of the impedance vs. frequency curve around the resonance frequency of high-loss capacitors

Loss Dependent Derating

The heat release from AC applications limits the temperature range of for example paper capacitors where the loss raises the internal temperature appreciably. While DC applications for example allow +85 or +100°C, AC applications already at 50 Hz may require limitations to maximum +70°C.

Higher frequencies require further derating because of the current which grows correspondingly. The R.M.S. value of the AC voltage furthermore is derated according to the permitted DC value not only with respect to the peak value and the temperature rise but also because of the additional strain that every repolarization exerts on the dielectric. The higher the rated voltage, the higher the degree of derating.

Example: AC/DC = 40/63, 63/100, 125/250, 220/400, 300/630, 500/1000, 660/1600. But please, always check what the relevant data sheets specify.

Jump to section

1. Impedance IMP and ESR

  • 1. Impedance IMP and ESR
  • 2. Dissipation Factor (DF) / Tanδ and Q Value
  • 3. Series or Parallel ? Cs,Rs or Cp,Rp ? ESR or DF ?
  • 4. Losses versus Frequency
Page 1 of 4
Previous 1234 Next

Related Posts

Aerospace & Defence

Supercapacitors for Space Applications: Trends and Opportunities

3.1.2023
15
Market & Supply Chain

JX Nippon Mining and Metals Announces Participation in Tantalum Production at Mibra Mine in Brazil

30.12.2022
19
Inductors

A Pitfall of Transformer-Based Isolated DC-DC Converter

30.12.2022
44

Upcoming Events

Jan 12
8:30 - 14:30 EST

Supercapacitor Virtual Technology Event; Richardson RFPD | EST

Jan 13
8:30 - 14:30 HKT

Supercapacitor Virtual Technology Event; Richardson RFPD | HKT

Jan 17
January 17 @ 12:00 - January 18 @ 14:00 CET

Microelectronic Packaging Failure Modes and Analysis

View Calendar

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Coefficient of Linear Thermal Expansion on Polymers Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.