• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Aluminum Electrolytic Capacitors

26.7.2022

Bourns Expands Automotive High Power Thick Film Chip Resistor Series

31.1.2023

Vishay Releases Automotive Polymer Tantalum Capacitors

30.1.2023

USB PD 3.0 Flyback Transformer Optimisation

30.1.2023

Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition

31.1.2023

DC Blocking Capacitor Selection for Mobile Stereo High-Fidelity Audio

27.1.2023

What is X2Y Bypass Capacitor and What is it Good For?

27.1.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Bourns Expands Automotive High Power Thick Film Chip Resistor Series

    Vishay Releases Automotive Polymer Tantalum Capacitors

    USB PD 3.0 Flyback Transformer Optimisation

    Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition

    DC Blocking Capacitor Selection for Mobile Stereo High-Fidelity Audio

    What is X2Y Bypass Capacitor and What is it Good For?

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Rubycon Releases High Capacitance Hybrid Aluminum Capacitors 

    TDK Releases the Most Compact Safety Motor-Run Film Capacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Interleaved Multiphase PWM Converters Explained

    A Pitfall of Transformer-Based Isolated DC-DC Converter

    Leakage Models of Multi-Winding Transformer in LLC Converter

    LLC Transformer Design for Power Converters

    Printed Resistors in a High Performance PCB System

    Transformer Characteristics Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Bourns Expands Automotive High Power Thick Film Chip Resistor Series

    Vishay Releases Automotive Polymer Tantalum Capacitors

    USB PD 3.0 Flyback Transformer Optimisation

    Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition

    DC Blocking Capacitor Selection for Mobile Stereo High-Fidelity Audio

    What is X2Y Bypass Capacitor and What is it Good For?

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Rubycon Releases High Capacitance Hybrid Aluminum Capacitors 

    TDK Releases the Most Compact Safety Motor-Run Film Capacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Interleaved Multiphase PWM Converters Explained

    A Pitfall of Transformer-Based Isolated DC-DC Converter

    Leakage Models of Multi-Winding Transformer in LLC Converter

    LLC Transformer Design for Power Converters

    Printed Resistors in a High Performance PCB System

    Transformer Characteristics Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Aluminum Electrolytic Capacitors

26.7.2022
Reading Time: 27 mins read
0 0
0
SHARES
1.4k
VIEWS

This article describes aluminum electrolytic capacitors types, features, characteristics and behaviour.

The primary strength of aluminum electrolytic capacitors is their ability to provide a large capacitance value in a small package, and do so for a relatively low cost.

RelatedPosts

Failure Analysis of Capacitors and Inductors

Variable Capacitors and Trimmers

Supercapacitors

Additionally, they tend to have good self-healing characteristics; when a localized weak spot in the aluminum oxide dielectric layer develops, the increased leakage current flow through the weak point in the dielectric causes a chemical reaction similar to that used during the initial formation of the dielectric layer, resulting in a thickening of the dielectric at the weak point, and a consequent reduction in leakage current.

Jump to section

1. Construction, Features and Manufacturing Process of Aluminum Capacitors

  • 1. Construction, Features and Manufacturing Process of Aluminum Capacitors
  • 2. Wet Aluminum Electrolytic Capacitors
  • 3. Solid Aluminum Electrolytic Capacitors, Polymer, Hybrid and TCNQ Salt

The shortcomings of aluminum capacitors are mostly related to

  1. the chemically-reactive nature of the materials used in their construction
  2. the conductive properties of the electrolyte solutions
  3. the volatility of liquid electrolytes.

The chemically reactive nature of the materials used in aluminum capacitors is problematic on two points; the stability of the dielectric layer and the long-term mechanical integrity of the device. Since the aluminum oxide dielectric layer in these devices is formed through an electrochemical process, it can also be eroded by an electrochemical process simply by reversing the applied voltage. This is why most aluminum capacitors are polarized; application of voltage with the wrong polarity causes rapid erosion & thinning of the dielectric, resulting in high leakage current and excessive internal heating.

From a mechanical integrity standpoint, mixing a highly reactive metal (aluminum) with a corrosive electrolyte solution is a delicate proposition; errors in electrolyte composition can result in premature failure, as evidenced by the “capacitor plague” of the early 2000’s.

Another shortcoming of aluminum electrolytic capacitors is the fact that the electrolytes used aren’t particularly efficient conductors, because conduction in electrolyte solutions is achieved through ionic, rather than electronic conduction; instead of loose electrons moving between atoms serving as the charge carriers, ions (atoms or small groups thereof that have a charge due to a surplus or deficit of electrons) are moving about through the solution. Since ions are more bulky than electrons, they don’t move as easily and hence ionic conduction generally tends to be a higher-resistance proposition than electronic conduction. The extent to which this is the case is influenced significantly by temperature; the lower the temperature, the more difficult it is for ions in an electrolyte solution to move about through the solution, which translates into a higher resistance. Thus, electrolytic capacitors tend to have a relatively high ESR that exhibits a strong inverse correlation with temperature.

The third major downside to aluminum capacitors (with the exception of the solid polymer types) is that the liquid electrolyte solutions tend to evaporate over time, eventually being lost to the atmosphere by diffusion through the rubber sealing plug, leaks in safety vent structures, or similar phenomena.

There are more types of aluminum electrolytic capacitors construction and termination styles:

  • SMDs (V-chip) for surface mounting on printed circuit boards or substrates
  • Radial lead terminals (single ended) for vertical mounting on printed circuit boards
  • Axial lead terminals for horizontal through hole mounting on printed circuit boards
  • Radial pin terminals (snap-in) for power applications
  • Press-fit terminals
  • Large screw terminals for power applications

The most common styles are wound foil capacitors packaged in aluminum can as leaded or SMD termination styles. See Figure 1. and 2.

Figure 1. X Ray image of aluminum can wet electrolyte leaded capacitors
Figure 2 aluminum electrolytic capacitor structure drawing

Electrolyte can be wet, gel (TCNQ salt), solid (conductive polymer) or hybrid (combining wet and conductive polymer) based:

Wet Liquid Types

  • 4 ~ > 500V
  • high ESR
  • poor temp performance
  • dry out, cap decrease with life
  • low cost

Solid Conductive Polymer

  • 2.5 ~ 100V
  • low ESR, high ripple current
  • stable high and low temperatures
  • leakage current stability issues
  • higher sensitivity to humidity
  • higher cost

Hybrid Wet + Polymer

  • Up to 125V
  • similar ESR as polymer capacitor
  • more stable then liquid type
  • better leakage current stability vs polymer cap
  • higher cost comparing to wet

Panasonic, one of supplier of all aluminum and tantalum polymer capacitor technologies provide comparison of its technologies as follows:

  • OS-CON is a TCNQ salt electrolyte
  • Hybrid combine wet and polymer electrolytes
  • SP-Cap is a solid polymer chip capacitor
  • POSCAP is a tantalum polymer capacitor

The following chart on Figure 3. is demonstrating lifetime with temperature comparison of wet vs polymer vs hybrid aluminum capacitors that can be helpful for a specific application selection guide.

Figure 3. Polymer versus Electrolytic versus Hybrid aluminum capacitors life time; source: Panasonic

DCL and balancing

Aluminum electrolytic capacitors leakage current and balancing is explained in more details in a paper below:

DCL of Aluminum Electrolytic Capacitors – by Dr. Arne Albertsen from Jianghai Europe Electronic Components GmbH

Manufacturing Process:

The production process starts with mother rolls. First, the etched, roughened and pre-formed anode foil on the mother roll as well as the spacer paper and the cathode foil are cut to the required width.

The foils are fed to an automatic winder, which makes a wound section in a consecutive operation involving three sequential steps: terminal welding, winding, and length cutting. In the next production step the wound section fixed at the lead out terminals is soaked with electrolyte under vacuum impregnation.

The impregnated winding is then built into an aluminum case, provided with a rubber sealing disc, and mechanically tightly sealed by curling. Thereafter, the capacitor is provided with an insulating shrink sleeve film. This optically ready capacitor is then contacted at rated voltage in a high temperature post-forming device for healing all the dielectric defects resulting from the cutting and winding procedure.

After post-forming, a 100% final measurement of capacitance, leakage current, and impedance takes place. Taping closes the manufacturing process; the capacitors are ready for delivery.

Process flow diagram for production of radial aluminum electrolytic capacitors with non-solid electrolyte
Figure 4. Manufacturing process of aluminum electrolytic capacitors. source: wikipedia
Jump to section

1. Construction, Features and Manufacturing Process of Aluminum Capacitors

  • 1. Construction, Features and Manufacturing Process of Aluminum Capacitors
  • 2. Wet Aluminum Electrolytic Capacitors
  • 3. Solid Aluminum Electrolytic Capacitors, Polymer, Hybrid and TCNQ Salt
Page 1 of 3
Previous 123 Next

Related Posts

Capacitors

Vishay Releases Automotive Polymer Tantalum Capacitors

30.1.2023
26
Inductors

USB PD 3.0 Flyback Transformer Optimisation

30.1.2023
9
Capacitors

Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition

31.1.2023
105

Upcoming Events

Feb 8
11:00 - 12:00 CET

How Does Your PCB Layout Influence the Costs in PCB Manufacturing? Würth Elektronik Webinar

Feb 27
February 27 @ 12:00 - March 2 @ 14:00 EST

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Mar 3
12:00 - 14:00 EST

External Visual Inspection per Mil-Std-883 TM 2009

View Calendar

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.