• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Ceramic Coaxial Resonator Filters Basics

4.1.2023

Exploring Frenetic and Maxwell Options for an Optimal Transformer Performance in LLC Circuit

31.5.2023

TT Electronics Unveils Busbar Shunt Resistors

31.5.2023

Bourns Releases New Power NTC Thermistors

31.5.2023

KYOCERA Developed Industry Leading 008004 Hi-Q MLCC for PA Modules

31.5.2023

MLCC Suppliers Reduced Production Capacity in 1H23 due to Weak Consumer Market Demand

29.5.2023

Introduction of Knowles MLCCs StackiCap, its Benefits and Applications

25.5.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Exploring Frenetic and Maxwell Options for an Optimal Transformer Performance in LLC Circuit

    TT Electronics Unveils Busbar Shunt Resistors

    Bourns Releases New Power NTC Thermistors

    KYOCERA Developed Industry Leading 008004 Hi-Q MLCC for PA Modules

    MLCC Suppliers Reduced Production Capacity in 1H23 due to Weak Consumer Market Demand

    Introduction of Knowles MLCCs StackiCap, its Benefits and Applications

    Murata Unveils Compact MLCCs with Extended Creepage Distance

    Properties and Characteristics of Crystal Units

    YAGEO Releases High Capacitance 630V NP0 MLCC for Higher Power Density and Efficiency Circuits

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Exploring Frenetic and Maxwell Options for an Optimal Transformer Performance in LLC Circuit

    Fast 25kW SiC EV Charger Design; OnSemi and Würth Elektronik Webinar

    PFC Inductor Magnetic Design Considerations; Frenetic Webinar

    Introduction to Capacitor Technologies; WE Webinar

    Self-Adjusting and Economical Switched Capacitor Balancer for Serially Connected Storage-Cells

    How to Design EMC Efficient Power Converter; WE Webinar

    Selecting Capacitors for High Power Buck-Booster Converters

    How to use Off-the-Shelf Transformers in Switching Power Supplies

    Simple Capacitors Pre-Charger Based on Unique ‘Floating Integrator’

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Exploring Frenetic and Maxwell Options for an Optimal Transformer Performance in LLC Circuit

    TT Electronics Unveils Busbar Shunt Resistors

    Bourns Releases New Power NTC Thermistors

    KYOCERA Developed Industry Leading 008004 Hi-Q MLCC for PA Modules

    MLCC Suppliers Reduced Production Capacity in 1H23 due to Weak Consumer Market Demand

    Introduction of Knowles MLCCs StackiCap, its Benefits and Applications

    Murata Unveils Compact MLCCs with Extended Creepage Distance

    Properties and Characteristics of Crystal Units

    YAGEO Releases High Capacitance 630V NP0 MLCC for Higher Power Density and Efficiency Circuits

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Exploring Frenetic and Maxwell Options for an Optimal Transformer Performance in LLC Circuit

    Fast 25kW SiC EV Charger Design; OnSemi and Würth Elektronik Webinar

    PFC Inductor Magnetic Design Considerations; Frenetic Webinar

    Introduction to Capacitor Technologies; WE Webinar

    Self-Adjusting and Economical Switched Capacitor Balancer for Serially Connected Storage-Cells

    How to Design EMC Efficient Power Converter; WE Webinar

    Selecting Capacitors for High Power Buck-Booster Converters

    How to use Off-the-Shelf Transformers in Switching Power Supplies

    Simple Capacitors Pre-Charger Based on Unique ‘Floating Integrator’

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Ceramic Coaxial Resonator Filters Basics

4.1.2023
Reading Time: 4 mins read
0
SHARES
15
VIEWS

This blog article from Knowles Precision Devices perform a deep dive on ceramic coaxial resonator filters basics, its construction, function and features.

Before jumping into a discussion on ceramic coaxial resonators, it is important to understand what a resonator is and how these electrical components work.

RelatedPosts

Knowles Offers Build-to-Print Services for Thin Film Circuits

Design Challenges with Bidirectional EV Charging

How to Select Capacitors for High-Voltage X-Ray Power Supplies

In general, a resonator is an essential component for constructing a bandpass filter since the resonator is what will allow specified frequencies, or bands of frequencies, to pass through the filter as shown in Figure 1.

A simple resonator, such as an LC resonator, can store frequency-dependent electric energy in the capacitance (C) and magnetic energy in the inductance (L).The resonant frequency of a resonator occurs when the energy stored in electric field is equal to the energy stored in the magnetic field.

Figure 1. An illustration of a band pass filter and its key characteristics.
Figure 2. An example showing how electrical and magnetic energy travel in a coaxial transmission line.

An Overview of Ceramic Coaxial Resonators

Now that we’ve established the basics of how a resonator works, we can explore how a ceramic coaxial resonator functions. In general, a ceramic coaxial resonator is a transmission line resonator that operates in transverse electromagnetic (TEM) mode.

Figure 3. A depiction of how a signal will be impacted depending on the type of ceramic coaxial resonator added.

TEM mode has both E- and H-field components at right angles to the z-direction and no signals in the direction of propagation as shown in Figure 2.

A coaxial resonator line is usually configured using a ceramic rectangular prism with a coaxial hole running through the center. The dielectric type, length, and metallization will dictate performance at frequency.

The line can also be cut to a specific length related to the wavelength of the frequency of interest. For example, to make the lines shorter we can use ceramics with specific dielectric constants, which will shrink the wavelength of the frequency we are interested in.

Figure 3 shows an example of how a signal is impacted when either a λ/4 resonator with one end metallized or a λ/2 resonator with both ends open is added.

Using Ceramic Coaxial Resonators to Make Filters

Let’s now look at when it may be advantageous to use ceramic coaxial resonators to create filters. In previous blog post, Basic Filter Circuits Explained, we showed a number of examples of how you can construct simple filters from different combinations of resistors (Rs), Cs, and Ls. While this approach is great for developing simple filters, as operating frequencies increase and filtering needs become more complex, you are likely to run into a variety of issues with performance and size if you continue to try to use only these basic circuit building blocks.

Instead, short-circuit ceramic coaxial resonators made with modern high-performance ceramic dielectric materials can be used in place of LC resonators. The high Q possible in the UHF and microwave frequency range makes ceramic coaxial resonators an ideal option for many applications, especially when cost, size, and stability are important.

The Capabilities of Ceramic Coaxial Resonator Filters

The plot in Figure 4 shows typical filter bandwidth vs frequency on multiple filter types including ceramic coaxial filters made by Knowles Precision Devices.

Figure 4. Bandwidth vs frequency range of different filter technology with ceramic coaxial resonator filters dark blue area with a yellow outline.

Typical ceramic coaxial resonator filters can be found to cover the following ranges:

  • Narrow to moderate bandwidths for F0 = 200MHz to 2.2 GHz for large profile 12 mm and 18 mm resonator bandpass filters, 0.2 percent to 30 percent fractional bandwidth.
  • Moderate to wide bandwidths for F0 = 1 GHz to 6 GHz for small profile 2 mm to 6 mm resonator bandpass filters, 3 percent to 45 percent fractional bandwidth
  • Narrow bandwidth band reject filters for F0 = 400 MHz to 4 GHz, 1 percent to 15 percent fractional bandwidth
Source: Knowles

Related Posts

Oscillators

Properties and Characteristics of Crystal Units

24.5.2023
25
Inductors

Transformer Optimal Operating Frequency for Phase-Shifted Full-Bridge Converter

22.5.2023
32
Inductors

High-Frequency Magnetics Role in Formule 1 Power Electronics

12.5.2023
43

Upcoming Events

Jun 1
June 1 @ 12:00 - June 2 @ 14:00 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Jun 13
June 13 @ 12:00 - June 16 @ 14:00 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Jun 14
11:00 - 12:00 CEST

STRETCH.flex 2.0 Stretchable PCB Technology to the Limits

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.