Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Stackpole Extends Voltage of High Temp Chip Resistors

    High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Stackpole Extends Voltage of High Temp Chip Resistors

    High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Chu’s Limit for Antenna bandwidth — a limit no more due to capacitors and inductors

27.2.2017
Reading Time: 2 mins read
A A

source: Phys Org news

Chu’s Limit, a fundamental principle of electromagnetics, dictates that the bandwidth an antenna can function in has a maximum level proportional to the physical size of the antenna—the smaller the antenna, the smaller the bandwidth, the slower and less capable the communications link. Justin Church, used non-Foster circuits embedded in an electrically small antenna to produce the first experimentally measured instance of exceeding the Limit by negatively charged capacitors and inductors.

RelatedPosts

Vishay Releases Miniature SMD Trimmers for Harsh Environments

Würth Elektronik Releases Push-Button and Main Switches

Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

Chu’s Limit has been a foundational law of antenna and telecommunications research since its introduction in the late 1940s, but a scientist at the Space and Naval Warfare Systems Center Pacific (SSC Pacific) has recently, for the first time, exceeded Chu’s Limit in a measured experiment.

Justin Church, an engineer in the Center’s applied electromagnetics group, used non-Foster circuits embedded in an electrically small antenna to produce the first experimentally measured instance of exceeding the Limit. Several papers have theorized or simulated such a possibility, but Church is the first to demonstrate an antenna capable of using bandwidths that exceed this fundamental limit.

He was able to achieve this thanks to two novel advances: non-Foster circuits and internal matching. Non-Foster circuits are active, transistorized circuits that effectively create capacitors and inductors that are negatively charged, meaning the reactance is inverted to that of conventional capacitors and inductors. Coupling this technique with internal matching—embedding the antenna and circuit into one structure—allowed the electrically small antenna to achieve a broader bandwidth, while not sacrificing efficiency. An electrically small antenna is one in which the largest dimension of the structure is less than one-tenth of a wavelength. Most electrically small antennas have less than 1 percent efficiency, but Church was able to achieve an efficiency of 85 percent.

Church experimentally verified an instantaneous bandwidth of 18 Megahertz from an internally matched, non-Foster integrated antenna that had a physical volume less than one-tenth the operational wavelength. This measured bandwidth exceeds the Chu limit by 2.5 times.

Aside from the scientific importance of achieving this previous impossibility, this is an important area of research for the Navy, and will have far reaching impacts on the warfighter.

“A lot of the communication bands the military is interested in using are often at low frequencies—very high frequency (VHF) and ultra-high frequency (UHF). Here, the wavelengths are quite long—over a meter or more—and at these frequencies the wave travels a long distance,” Church explained. “The challenge is, in order for an antenna to operate efficiently at those frequencies, it has to be physically large, often on a scale of several meters.”

This is a challenge for those tasked with executing Navy missions, where smaller, portable antennas are much more effective and covert.

“There’s a big push, and always a need for the military to research how small you can make antennas and have them operate as efficiently as large ones,” Church said. “Antennas that are compact allow for greater operational capabilities.”

SSC Pacific is the naval research and development lab tasked with ensuring Information Warfare superiority.

featured image: Measured bandwidth performance comparison of non-Foster integrated antenna vs. passive (conventional) antenna of the same physical size. Credit: Space and Naval Warfare Systems Center

Related

Recent Posts

Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

13.8.2025
4

High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

12.8.2025
40

Bourns Releases High Power High Ripple Chokes

8.8.2025
24

Radiation Tolerance of Tantalum and Ceramic Capacitors

8.8.2025
60

TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

7.8.2025
31

Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

6.8.2025
34

Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

6.8.2025
46

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

6.8.2025
39

Vishay Releases High Saturation 180C Automotive Inductors

6.8.2025
21

How to Calculate the Output Capacitor for a Switching Power Supply

6.8.2025
40

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version