Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns SSD‑1000A AEC‑Q Digital Current Sensors

    YAGEO High‑Capacitance X7R Automotive MLCC Extensions

    How Metal Prices Are Driving Passive Component Price Hikes

    Modelithics COMPLETE Library v25.8 for Keysight ADS

    Taiyo Yuden Releases 165C Automotive Multilayer Metal Power Inductor in 1608 Size

    Energy-Controlled Structural Evolution of Amorphous Ta₂O₅ in Tantalum Anodes

    Jianghai Vibration‑Resistant Aluminum Capacitors Guidelines for Industrial Electronics

    2025 Top Passive Components Blog Articles

    Exxelia Releases Custom Smart Integrated Magnetics for Space Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns SSD‑1000A AEC‑Q Digital Current Sensors

    YAGEO High‑Capacitance X7R Automotive MLCC Extensions

    How Metal Prices Are Driving Passive Component Price Hikes

    Modelithics COMPLETE Library v25.8 for Keysight ADS

    Taiyo Yuden Releases 165C Automotive Multilayer Metal Power Inductor in 1608 Size

    Energy-Controlled Structural Evolution of Amorphous Ta₂O₅ in Tantalum Anodes

    Jianghai Vibration‑Resistant Aluminum Capacitors Guidelines for Industrial Electronics

    2025 Top Passive Components Blog Articles

    Exxelia Releases Custom Smart Integrated Magnetics for Space Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Chu’s Limit for Antenna bandwidth — a limit no more due to capacitors and inductors

27.2.2017
Reading Time: 2 mins read
A A

source: Phys Org news

Chu’s Limit, a fundamental principle of electromagnetics, dictates that the bandwidth an antenna can function in has a maximum level proportional to the physical size of the antenna—the smaller the antenna, the smaller the bandwidth, the slower and less capable the communications link. Justin Church, used non-Foster circuits embedded in an electrically small antenna to produce the first experimentally measured instance of exceeding the Limit by negatively charged capacitors and inductors.

RelatedPosts

Bourns SSD‑1000A AEC‑Q Digital Current Sensors

YAGEO High‑Capacitance X7R Automotive MLCC Extensions

How Metal Prices Are Driving Passive Component Price Hikes

Chu’s Limit has been a foundational law of antenna and telecommunications research since its introduction in the late 1940s, but a scientist at the Space and Naval Warfare Systems Center Pacific (SSC Pacific) has recently, for the first time, exceeded Chu’s Limit in a measured experiment.

Justin Church, an engineer in the Center’s applied electromagnetics group, used non-Foster circuits embedded in an electrically small antenna to produce the first experimentally measured instance of exceeding the Limit. Several papers have theorized or simulated such a possibility, but Church is the first to demonstrate an antenna capable of using bandwidths that exceed this fundamental limit.

He was able to achieve this thanks to two novel advances: non-Foster circuits and internal matching. Non-Foster circuits are active, transistorized circuits that effectively create capacitors and inductors that are negatively charged, meaning the reactance is inverted to that of conventional capacitors and inductors. Coupling this technique with internal matching—embedding the antenna and circuit into one structure—allowed the electrically small antenna to achieve a broader bandwidth, while not sacrificing efficiency. An electrically small antenna is one in which the largest dimension of the structure is less than one-tenth of a wavelength. Most electrically small antennas have less than 1 percent efficiency, but Church was able to achieve an efficiency of 85 percent.

Church experimentally verified an instantaneous bandwidth of 18 Megahertz from an internally matched, non-Foster integrated antenna that had a physical volume less than one-tenth the operational wavelength. This measured bandwidth exceeds the Chu limit by 2.5 times.

Aside from the scientific importance of achieving this previous impossibility, this is an important area of research for the Navy, and will have far reaching impacts on the warfighter.

“A lot of the communication bands the military is interested in using are often at low frequencies—very high frequency (VHF) and ultra-high frequency (UHF). Here, the wavelengths are quite long—over a meter or more—and at these frequencies the wave travels a long distance,” Church explained. “The challenge is, in order for an antenna to operate efficiently at those frequencies, it has to be physically large, often on a scale of several meters.”

This is a challenge for those tasked with executing Navy missions, where smaller, portable antennas are much more effective and covert.

“There’s a big push, and always a need for the military to research how small you can make antennas and have them operate as efficiently as large ones,” Church said. “Antennas that are compact allow for greater operational capabilities.”

SSC Pacific is the naval research and development lab tasked with ensuring Information Warfare superiority.

featured image: Measured bandwidth performance comparison of non-Foster integrated antenna vs. passive (conventional) antenna of the same physical size. Credit: Space and Naval Warfare Systems Center

Related

Recent Posts

YAGEO High‑Capacitance X7R Automotive MLCC Extensions

8.1.2026
12

How Metal Prices Are Driving Passive Component Price Hikes

8.1.2026
22

Modelithics COMPLETE Library v25.8 for Keysight ADS

7.1.2026
19

Taiyo Yuden Releases 165C Automotive Multilayer Metal Power Inductor in 1608 Size

7.1.2026
23

Energy-Controlled Structural Evolution of Amorphous Ta₂O₅ in Tantalum Anodes

6.1.2026
26

Jianghai Vibration‑Resistant Aluminum Capacitors Guidelines for Industrial Electronics

6.1.2026
17

2025 Top Passive Components Blog Articles

5.1.2026
57

Exxelia Releases Custom Smart Integrated Magnetics for Space Applications

5.1.2026
26
Credit: Institute of Science Tokyo

Researchers Demonstrated 30nm Ferroelectric Capacitor for Compact Memory

2.1.2026
28

Upcoming Events

Jan 27
16:00 - 17:00 CET

Simplifying Vehicle Development with Automotive Ethernet and Zonal Smart Switch Technologies

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version