Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

    Fischer Releases High Vibration Robust Ratchet Locking USB-C Connector System

    Littelfuse Unveils High-Use Tactile Switches with 2 Million Cycle Lifespan

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

    Fischer Releases High Vibration Robust Ratchet Locking USB-C Connector System

    Littelfuse Unveils High-Use Tactile Switches with 2 Million Cycle Lifespan

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Embroidering electronics into the next generation of ‘smart’ fabrics

11.11.2019
Reading Time: 4 mins read
A A

source: The Conversation article

Asimina Kiourti, The Ohio State University

RelatedPosts

Bourns Extends Rotational Life Option for its Guitar Potentiometer

Modeling and Simulation of Leakage Inductance

Power Inductor Considerations for AI High Power Computing – Vishay Video

Archaeology reveals that humans started wearing clothes some 170,000 years ago, very close to the second-to-last ice age. Even now, though, most modern humans wear clothes that are only barely different from those earliest garments. But that’s about to change as flexible electronics are increasingly woven into what are being called “smart fabrics.”

Many of these are already available for purchase, such as leggings that provide gentle vibrations for easier yoga, T-shirts that track player performance and sports bras that monitor heart rate. Smart fabrics have potentially promising uses in health care (measuring patients’ heart rate and blood pressure), defense (monitoring soldiers’ health and activity levels), cars (adjusting seat temperatures to make passengers more comfortable) and even smart cities (letting signs communicate with passersby).

Ideally, the electronic components of these garments – sensors, antennas to transmit data and batteries to supply power – will be small, flexible and largely unnoticed by their wearers. That’s true today for sensors, many of which are even machine-washable. But most antennas and batteries are rigid and not waterproof, so they need to be detached from the clothing before washing it.

My work at the ElectroScience Laboratory of the Ohio State University aims to make antennas and power sources that are equally flexible and washable. Specifically, we’re embroidering electronics directly into fabrics using conductive threads, which we call “e-threads.”

Antenna embroidery

An embroidered antenna.
ElectroScience Lab, CC BY-ND

The e-threads we’re working with are bundles of twisted polymer filaments to provide strength, each with a metal-based coating to conduct electricity. The polymer core of each filament is typically made out of Kevlar or Zylon, while the surrounding coating is silver. Tens or even hundreds of these filaments are then twisted together to form a single e-thread that’s usually less than half a millimeter across.

These e-threads can be easily used with common commercial embroidery equipment – the same computer-connected stitching machines that people use every day to put their names on sports jackets and sweatshirts. The embroidered antennas are lightweight and just as good as their rigid copper counterparts, and can be as intricate as state-of-the-art printed circuit boards.

Our e-thread antennas can even be combined with regular threads in more complex designs, like integrating antennas into corporate logos or other designs. We’ve been able to embroider antennas on fabrics as thin as organza and as thick as Kevlar. Once embroidered, the wires can be connected to sensors and batteries by traditional soldering or flexible interconnections that plug components together.

So far, we’ve been able to create smart hats that read deep brain signals for patients with Parkinson’s or epilepsy. We have embroidered T-shirts with antennas that extend the range of Wi-Fi signals to the wearer’s mobile phone. We also made mats and bedsheets that monitor infants’ height to screen for a range of early childhood medical conditions. And we’ve made foldable antennas that measure how much a surface the fabric is on has bent or lifted.

Foldable antennas made with textile electronics.

Moving beyond the antenna

My lab is also working with other Ohio State researchers, including chemist Anne Co and physician Chandan Sen, to make flexible fabric-based miniature power generators.

Printed on fabric, metals can generate power.
ElectroScience Lab, CC BY-ND

We use a process much like inkjet printing to place alternating regions of silver and zinc dots on the fabric. When those metals come into contact with sweat, saline or even fluid discharges from wounds, silver acts as the positive electrode and zinc serves as the negative electrode – and electricity flows between them.

We have generated small amounts of electricity just by getting the fabric damp – without the need for any additional circuits or components. It’s a fully flexible, washable power source that can connect with other wearable electronics, eliminating the need for conventional batteries.

The ConversationBoth together and individually, these flexible, wearable electronics will transform clothing into connected, sensing, communicating devices that mesh well with the fabric of the interconnected 21st century.

Asimina Kiourti, Assistant Professor of Electrical and Computer Engineering, The Ohio State University

This article was originally published on The Conversation. Read the original article.

Featured Image: Embroidery machine creating FSS structure, source: “Embroidery and Related Manufacturing Techniques for Wearable Antennas: Challenges and Opportunities”, read the full article here

Related

Recent Posts

Bourns Extends Rotational Life Option for its Guitar Potentiometer

9.5.2025
5

Modeling and Simulation of Leakage Inductance

9.5.2025
1

Power Inductor Considerations for AI High Power Computing – Vishay Video

9.5.2025
5

TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

9.5.2025
3

Littelfuse Unveils High-Use Tactile Switches with 2 Million Cycle Lifespan

9.5.2025
2

Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

6.5.2025
38

YAGEO Releases High Current SMD Common Mode Choke With Shape Core Construction

5.5.2025
23

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
46

Tariffs Crush Sales Sentiment in April 2025 ECST Results

5.5.2025
61

Solid State Polymer Multilayer Capacitors For High Temperature Application

2.5.2025
33

Upcoming Events

May 14
11:00 - 12:00 CEST

Reliable RIGID.flex PCBs for Critical Applications – Made in Europe

May 14
17:00 - 17:30 CEST

Calculating Foil Winding Losses with AI

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Physical Transformer Modelling in LTSpice

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • How to Design High Energy Power Inductor

    0 shares
    Share 0 Tweet 0
  • Capacitor Symbols

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version