Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Releases Compact 0806 Low‑DCR Power Inductor

    Murata Opens New Ceramic Capacitor Manufacturing and R&D Center in Japan

    Murata Publishes Power Delivery Guide for AI Servers

    Selecting Current Sense Transformers with Würth Elektronik REDEXPERT

    Mechanical Drift Indicator of Tantalum Capacitor Anodes Degradation under Reverse Bias

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    Wk 5 Electronics Supply Chain Digest

    Top 10 Connector Vendors by Product Type

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Releases Compact 0806 Low‑DCR Power Inductor

    Murata Opens New Ceramic Capacitor Manufacturing and R&D Center in Japan

    Murata Publishes Power Delivery Guide for AI Servers

    Selecting Current Sense Transformers with Würth Elektronik REDEXPERT

    Mechanical Drift Indicator of Tantalum Capacitor Anodes Degradation under Reverse Bias

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    Wk 5 Electronics Supply Chain Digest

    Top 10 Connector Vendors by Product Type

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

FastCAP Systems Rebrands to Nanoramic Laboratories

27.5.2018
Reading Time: 2 mins read
A A

Source: Nanoramic Laboratories news

As FastCAP expands its product lines to include advanced materials from carbon nanotubes, the company rebrands to Nanoramic Laboratories.

RelatedPosts

Vishay Releases Compact 0806 Low‑DCR Power Inductor

Murata Opens New Ceramic Capacitor Manufacturing and R&D Center in Japan

Murata Publishes Power Delivery Guide for AI Servers

BOSTON, MA, May 24, 2018 — FastCAP Systems Corporation, an industry leader in extreme environment energy storage technology, is rebranding to Nanoramic Laboratories.  In addition to ultracapacitors, Nanoramic will specialize in advanced material solutions based on nanocarbon technology.

In 2018, FastCAP’s product offerings expanded to include a division focused on the development of advanced materials, with products as diverse as thermal interface materials, battery and capacitor electrodes, and EMI/RFI shielding technology.  The name FastCAP Systems no longer represents the company’s full suite of product offerings.  The shift in focus led executives to make the change from FastCAP Systems to Nanoramic Laboratories.

“By re-identifying our business around our core competencies in advanced materials, we are recognizing the broader market opportunities for our nanocarbon and composite material products.  These technologies are enablers for a host of energy storage technologies, thermal management and EMI shielding solutions, as well as light-weighting and structural materials to name a few,” said John Cooley, President and Chief Operating Officer.  “This, combined with overwhelming customer draw, has created a compelling opportunity to enter new and exciting markets while continuing to support our existing energy storage products.”

Nanoramic’s breakthrough product offering is a binder-free composite energy storage electrode initially designed for high temperature and high voltage ultracapacitors, also known as supercapacitors or electric double layer capacitors (EDLCs).  This binder-free feature allows for low ESR, high capacitance, and high electrochemical stability in the same electrode. The electrode is capable of wide temperature operation, with the ability to perform in conditions between -55ºC and 200ºC.  Its high operating voltage greater than 3V and high capacity retention make it superior to incumbent technology.

Nanoramic’s line of ultracapacitors will be sold under the name FastCAP Ultracapacitors.  FastCAP Ultracapacitors are the only ultracapacitors capable of operation in conditions up to 150ºC.  In fact, Nanoramic’s success in advanced material product development can be attributed to FastCAP Ultracapacitors’ years of research and expertise in developing carbon nanotube based electrodes.  FastCAP’s newest technology is a reflowable, slim profile, low-ESR ultracapacitor, that provides power loss protection in SSD and IOT technologies.

‍

‍


About Nanoramic:

Nanoramic specializes in material solutions based on nano-carbons.   Nano-carbons have exceptional electrical, thermal and mechanical properties at the nano-scale level. We synthesize and incorporate nano-carbons in various materials and transfer these properties at the macroscale level, addressing the needs of several applications. Nanoramic’s ultracapacitor division, FastCAP Ultracapacitors, is an industry leader in harsh environment energy storage, producing the only ultracapacitors capable of operating in temperatures up to 150ºC and under conditions of high shock and vibration.

Related

Recent Posts

Vishay Releases Compact 0806 Low‑DCR Power Inductor

5.2.2026
7

Murata Opens New Ceramic Capacitor Manufacturing and R&D Center in Japan

5.2.2026
14

Murata Publishes Power Delivery Guide for AI Servers

4.2.2026
43

Mechanical Drift Indicator of Tantalum Capacitor Anodes Degradation under Reverse Bias

3.2.2026
22

Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

2.2.2026
20

Top 10 Connector Vendors by Product Type

29.1.2026
64

CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

28.1.2026
48

ESA Call for Papers 6th Space Passive Component Days – SPCD 2026

28.1.2026
42

Component Distribution Supply Chain January 2026

28.1.2026
75

Upcoming Events

Feb 11
16:00 - 17:00 CET

What’s Next in Power Electronics Design

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

Mar 3
16:00 - 17:00 CET

Cybersecurity at the Eleventh Hour – from RED to CRA – Information and Discussion

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version