• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Filter Bandwidth Explained

4.1.2023

Rubycon Releases High Capacitance Hybrid Aluminum Capacitors 

25.1.2023

TDK Releases the Most Compact Safety Motor-Run Film Capacitors

24.1.2023

Temperature, Bias and Ageing Impact to Capacitance Stability of MLCC Ceramic Capacitors

24.1.2023

Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition

23.1.2023

Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

23.1.2023

Cornell Dubilier Announced Aluminum Flatpack Capacitors with High Capacitance Density

23.1.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Rubycon Releases High Capacitance Hybrid Aluminum Capacitors 

    TDK Releases the Most Compact Safety Motor-Run Film Capacitors

    Temperature, Bias and Ageing Impact to Capacitance Stability of MLCC Ceramic Capacitors

    Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Cornell Dubilier Announced Aluminum Flatpack Capacitors with High Capacitance Density

    KEMET Extends 450V Rectangular Aluminum Capacitors to 105°C Temperature Range

    Polysulfates Could Boost Energy Density and Temperature Range of Film Capacitors

    Coilcraft Releases Industry Lowest DCR and Low AC Losses SMD Power Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Interleaved Multiphase PWM Converters Explained

    A Pitfall of Transformer-Based Isolated DC-DC Converter

    Leakage Models of Multi-Winding Transformer in LLC Converter

    LLC Transformer Design for Power Converters

    Printed Resistors in a High Performance PCB System

    Transformer Characteristics Explained

    Variable Controlled Inductor in LLC Converter Application Example

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Rubycon Releases High Capacitance Hybrid Aluminum Capacitors 

    TDK Releases the Most Compact Safety Motor-Run Film Capacitors

    Temperature, Bias and Ageing Impact to Capacitance Stability of MLCC Ceramic Capacitors

    Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Cornell Dubilier Announced Aluminum Flatpack Capacitors with High Capacitance Density

    KEMET Extends 450V Rectangular Aluminum Capacitors to 105°C Temperature Range

    Polysulfates Could Boost Energy Density and Temperature Range of Film Capacitors

    Coilcraft Releases Industry Lowest DCR and Low AC Losses SMD Power Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Interleaved Multiphase PWM Converters Explained

    A Pitfall of Transformer-Based Isolated DC-DC Converter

    Leakage Models of Multi-Winding Transformer in LLC Converter

    LLC Transformer Design for Power Converters

    Printed Resistors in a High Performance PCB System

    Transformer Characteristics Explained

    Variable Controlled Inductor in LLC Converter Application Example

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Filter Bandwidth Explained

4.1.2023
Reading Time: 5 mins read
0 0
0
SHARES
507
VIEWS

This blog article from Knowles Precision Devices perform a deep dive on what bandwidth is and why we need to consider bandwidth when selecting a filter. 

In previous article, we provided a brief overview of five key filter specifications to understand, one of which was bandwidth. In this post, we will dive deeper into bandwidth by looking at the history of bandwidth, how bandwidth dictates data rate, and why the type of filter required will vary depending on an application’s bandwidth requirements.

RelatedPosts

Knowles White Paper: Resonant Capacitors for Wireless EV Charging 

Knowles Reflecting on 2022 and 2023 Plans

How Microstrip Filters Work

First, let’s look at why bandwidth is important. In general, bandwidth is defined as the width of the passband of the bandpass filter and expressed as the frequency difference between the lower and upper 3 dB points. Bandwidth will dictate the data rate, or how quickly we can send information through a channel such as an optical fiber or a section of the radio spectrum.

A Historical Review of How to Calculate Bandwidth

To better understand bandwidth, let’s look back at some of the historical work that laid the foundation for how to consider this specification. In the 1920s, when Harry Nyquist was working on the telegraph at AT&T’s Department of Development and Research, the notion of the Nyquist Rate emerged from his work. In short, this is the theoretical minimum system bandwidth needed to detect Rs symbols per second is Rs/2 hertz.

A way to look at this more simply is to think about how signals behave in time when they are band limited. A signal such as a series of pulses that is band limited in the frequency domain gets distorted and smeared out in time. To stop these smeared-out pulses from overlapping and becoming indistinguishable at a detector, there needs to be enough bandwidth to contain all, or at least the majority, of the frequency components that make up that signal pulse. It turns out, the amount of bandwidth we need gives us the Nyquist Rate, which says that for things to make sense at the other end of a transmission, we can send pulses as fast as twice the channel bandwidth, but no faster.

Similarly, to understand why bandwidth follows when we need to increase data rate, let’s look at the Shannon-Hartley theorem that was developed in 1948 by Claude Shannon and Ralph Hartley, both researchers at Bell Labs. This theorem tells us that the maximum amount of error-free digital data that can be transmitted over a channel of a given bandwidth in the presence of noise, which is calculated using the following equation:

where:

  • C = Channel capacity in bits/second
  • M = Number of channels (e.g. the MIMO order)
  • B = Bandwidth in hertz
  • S = transmit power, in watts
  • N = noise on channel, in watts
  • S/N = signal to noise ratio

To increase channel capacity (data rates) we can increase bandwidth, the number of channels, or transmit power (S) or decrease the noise on the channel (N). Since this post is focused on bandwidth, we won’t get into too much detail about this, but it is worth noting that you can reduce N and increase channel capacity with filtering. For example, by including a filter with very low insertion loss, you could improve the overall noise figure, or you could address any aliasing effects that would bring out of band noise in the band of interest using a really good filter. 

How Does an Application’s Bandwidth Requirements Impact Filter Selection?

Bandwidth requirements vary widely by application as shown in Figure 1.

Figure 1. The relationship between bandwidth and frequency for a variety of common microwave systems adapted From: Demmin, Booz Allen Hamilton 68th IEEE Electronic Components and Technology Conference.

Since different applications require different data rates to successfully transmit signals without introducing noise, different types of filters are necessary as bandwidth and frequency increase. In short, the type of filter you need depends on where you are on the frequency versus bandwidth plot. More specifically, if you look back to Five Key Filter Specifications again, we also noted that we can look at the relative, or fractional, bandwidth of the filter. This is the ratio of a filter’s bandwidth to its center frequency. As shown in Figure 2, different filter technologies are capable of different fractional bandwidths.

Figure 2. Fractional bandwidths across frequencies for a variety of filter types.

Throughout this post, we looked at several different aspects of bandwidth, including how bandwidth is driven by the required channel capacity, or data rate; how different systems have different data rates, and hence, different bandwidths; and how different filter technologies are used to meet these varying bandwidth needs. In the next post in this series, we will spend more time exploring poles and zeros and how these are tools a filter designer can manipulate to improve a filter’s response.

Related Posts

Capacitors

Temperature, Bias and Ageing Impact to Capacitance Stability of MLCC Ceramic Capacitors

24.1.2023
12
Applications e-Blog

Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

23.1.2023
13
Oscillators

Platform Structure Clock Oscillators

19.1.2023
19

Upcoming Events

Feb 8
11:00 - 12:00 CET

How Does Your PCB Layout Influence the Costs in PCB Manufacturing? Würth Elektronik Webinar

Feb 27
February 27 @ 12:00 - March 2 @ 14:00 EST

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Mar 3
12:00 - 14:00 EST

External Visual Inspection per Mil-Std-883 TM 2009

View Calendar

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0
  • Capacitors for Medical Applications: Component Selection Considerations

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.