Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest
    Researchers developed a polymer capacitor by combining two cheap, commercially available plastics. The new polymer capacitor makes use of the transparent material — pictured here, with vintage Penn State athletic marks visible through it — to store four times the energy and withstand significantly more heat.  Credit: Penn State

    Penn State Demonstrated Polymer Alloy Capacitor Film with 4× Energy Density up to 250C

    ECIA January 2026 Reports Strong Sales Confidence

    Vishay Unveils Ultra-Compact 0201 Thick Film Chip Resistors

    Würth Elektronik Component Data Live in Accuris

    Coilcraft Releases Automotive Common Mode Chokes

    MLCC Manufacturers Consider Price Increase as AI Demand Outpaces Supply

    YAGEO Extends Antenna Portfolio with Wi‑Fi 6E/7 and Tri‑band GNSS Solutions

    SCHURTER Introduces 2410 SMD Fuse for Robust AC/DC Protection

    TDK Releases High Temp 175C Automotive NTC thermistors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    2026 Power Magnetics Design Trends: Flyback, DAB and Planar

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest
    Researchers developed a polymer capacitor by combining two cheap, commercially available plastics. The new polymer capacitor makes use of the transparent material — pictured here, with vintage Penn State athletic marks visible through it — to store four times the energy and withstand significantly more heat.  Credit: Penn State

    Penn State Demonstrated Polymer Alloy Capacitor Film with 4× Energy Density up to 250C

    ECIA January 2026 Reports Strong Sales Confidence

    Vishay Unveils Ultra-Compact 0201 Thick Film Chip Resistors

    Würth Elektronik Component Data Live in Accuris

    Coilcraft Releases Automotive Common Mode Chokes

    MLCC Manufacturers Consider Price Increase as AI Demand Outpaces Supply

    YAGEO Extends Antenna Portfolio with Wi‑Fi 6E/7 and Tri‑band GNSS Solutions

    SCHURTER Introduces 2410 SMD Fuse for Robust AC/DC Protection

    TDK Releases High Temp 175C Automotive NTC thermistors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    2026 Power Magnetics Design Trends: Flyback, DAB and Planar

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Gowanda First in Industry – Shielded RF SMT Inductors with Established Reliability

25.1.2018
Reading Time: 2 mins read
A A

source: Gowanda news

Gowanda’s ER5025S provides MIL-PRF-39010 qualified inductors in surface mount configuration for military and other high reliability RF applications.

RelatedPosts

Penn State Demonstrated Polymer Alloy Capacitor Film with 4× Energy Density up to 250C

ECIA January 2026 Reports Strong Sales Confidence

Vishay Unveils Ultra-Compact 0201 Thick Film Chip Resistors

Gowanda, NY (USA) – Gowanda Electronics, a designer and manufacturer of precision electronic components for radio frequency and power applications, announces the introduction of the industry’s first off-the-shelf Shielded RF Surface Mount (SMT) Inductors with Established Reliability (ER) rating.

The first-ever shielded ER SMT series – Gowanda ER5025S – complements MIL-PRF-39010 Qualified Product List (QPL) axial-leaded (thru-hole) products and enables their conversion to SMT circuitry via this new MIL-PRF-39010 qualified SMT series. This series was developed by the company in response to a market need for shielded surface mount options to the traditional thru-hole designs. SMT components enable the use of more efficient assembly methods when compared to thru-hole methods. Gowanda was the first in the industry to offer an ER series in a surface mount configuration last year, Gowanda ER3013.

“This introduction of a shielded ER surface mount series is a result of Gowanda’s commitment to develop inductor designs that address the evolving needs of the design engineering community,” said Don McElheny, CEO of Gowanda Components Group. “We will continue to introduce more ER SMT series in the future”, he added.

The ER5025S series meets the military’s QPL requirements for Established Reliability to failure rate level M and addresses two MIL-PRF-39010 slash numbers (/17 and /18). This qualification required extensive testing for electrical, environmental, mechanical and thermal performance. Level M represents the first level of failure rating for off-the-shelf inductors for high-reliability applications. In its ongoing commitment to the military market, Gowanda intends to achieve higher level failure ratings (Level P, then Level R) as ongoing testing continues to accumulate the hours necessary to attain those ratings on this shielded ER SMT series.

Gowanda’s wirewound, molded, shielded ER5025S series is designed for RF applications in military, aerospace and space – including defense and NASA communities – for use in communication, guidance, security, radar, test & evaluation and special mission applications. This shielded series – with 3% max coupling – is used specifically in applications where the close proximity of circuit board components requires the inductor to be shielded to minimize interactions and ensure performance of the overall system.

The performance range provided by the ER5025S series includes inductance from 0.10 to 10,000 µH, Q min from 40 to 60, SRF MHz min from 1.0 to 450, DCR Ohms max from 0.025 to 139, and current rating mA DC from 30 to 2245. The MIL-PRF-39010 slash number determines specific performance, core type (phenolic, powdered iron or ferrite) and shielding type (iron sleeve or ferrite sleeve). Operating temperature range is -55°C to +105°C. See the performance data table and ER5025S datasheet link below for additional information.

ER5025S-datatable-sm

 

 

 

 

 

Gowanda has been designing and manufacturing RF and power inductors – both thru-hole and SMT – for the military’s Qualified Products List for many years. That experience combined with several successful ER thru-hole qualifications set the stage for the development of the industry’s first ER SMT inductors last year, and now the industry’s first shielded ER SMT inductors. Gowanda’s new Hi-Rel QPL Brochure provides a helpful overview.

Related

Recent Posts

Würth Elektronik Component Data Live in Accuris

19.2.2026
3

Coilcraft Releases Automotive Common Mode Chokes

19.2.2026
1

SCHURTER Introduces 2410 SMD Fuse for Robust AC/DC Protection

17.2.2026
4

2026 Power Magnetics Design Trends: Flyback, DAB and Planar

13.2.2026
29

Vishay Releases Sulfur‑Resistant Chip Resistors

12.2.2026
10

Vishay Releases Compact 0806 Low‑DCR Power Inductor

5.2.2026
33

Murata Publishes Power Delivery Guide for AI Servers

4.2.2026
122

Selecting Current Sense Transformers with Würth Elektronik REDEXPERT

3.2.2026
33

Mechanical Drift Indicator of Tantalum Capacitor Anodes Degradation under Reverse Bias

3.2.2026
48

Upcoming Events

Feb 24
16:00 - 17:00 CET

Mastering Galvanic Isolation: Ensuring Safety in Power Electronics

Mar 3
16:00 - 17:00 CET

Cybersecurity at the Eleventh Hour – from RED to CRA – Information and Discussion

Mar 21
All day

PSMA Capacitor Workshop 2026

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • 3-Phase EMI Filter Design, Simulation, Calculation and Test

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version