• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

High Voltage Resistors For Custom Power Supplies

24.4.2018

Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

23.3.2023

Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

23.3.2023

Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

21.3.2023

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

20.3.2023

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

20.3.2023

Flying Capacitors Explained

17.3.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

    Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

    Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

    Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

    Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

High Voltage Resistors For Custom Power Supplies

24.4.2018
Reading Time: 7 mins read
0 0
0
SHARES
1.2k
VIEWS

Source: ELE times article

There are a vast array of power supplies on the market, and the variety of resistor applications in those designs broaden the selection dramatically. So, for the purpose of this article, power supplies will be referred to as devices that have fixed DC outputs up to several kV.

RelatedPosts

Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

Whatever the application, power supply designers must be aware of specific regulations on safety or the environment that apply to the area, as well as the actual electrical performance. This article will look at the use of resistors in regulating the supply output and protecting the supply from faults.

The nomenclature of power supplies is often taken from whether the input is AC or DC, and what type of regulation is used to provide the correct DC output – normally switched mode or linear. Mains voltages usually power AC-DC supplies, while a DC-DC supply could be powered from a battery or any other DC power source. These DC-DC converters use switched mode technology to change the input voltage to a higher (boost) or lower (buck) output voltage.

Off-the-shelf power supplies are available for many markets and for general use, but in some cases a custom design is needed. Resistor manufacturers and suppliers such as Riedon have many years of experience in helping customers choose the correct component for every application.

Linear regulators

To understand the role of the components in power supplies, it is necessary to understand the basics of how power supplies operate. Many engineers will remember designing a circuit like that in Figure 1. The circuit uses a Zener diode to provide a constant voltage to the load (R2). R1is used to provide the minimum current to keep the Zener in constant breakdown, as well as the load current.

simple Zener regulator circuit
Figure 1 A simple Zener regulator circuit

This type of system works well for circuits that are low power and have a fairly constant supply voltage and load. If the load current reduces or the supply voltage increases significantly, then the diode may exceed its rated power dissipation. Resistors in a circuit like this are pretty easy to specify, as long as they are rated for the combined power of the Zener and load.

For power supplies that may have supply or load changes, a series design can use a pass transistor, which will ensure a regulated load current and decrease the voltage output to the desired value. Figure 2 demonstrates this type of circuit. Designs such as these normally use either an IC or a low drop-out (LDO) regulator to regulate the load supply. The voltage divider formed by R1 and R2 senses and sets the voltage output relative to a reference voltage. If the circuit has a fixed output, the divider will be located internally; for other applications, either one or both resistors may be placed externally.

The resistor values are chosen to give the required ratio, so the most important consideration is accuracy. If the comparator circuit features high gain and high input impedance, the worst case value can be easily calculated using the equation above, firstly with R1 at maximum and R2 at minimum, and then with R2 at maximum and R1 at minimum. These calculations show the maximum potential deviation from the desired output.

 Switched-mode power supplies

Linear power supplies can be inefficient due to energy being expended in both the series pass device and the load. The inefficiency increases the higher the voltage drop over the load.

Simplified diagram of a linear series regulator
Figure 2 Simplified diagram of a linear series regulator

To drive up efficiency, another supply topology is often used. The switched-mode power supply (SMPS) takes the unregulated input DC voltage, and switches it at a high frequency (10kHz to 1MHz). The duty cycle determines the DC output voltage after rectification and smoothing.

The regulation of the SMPS output also uses a potential divider, but this time to regulate the frequency of switching and the duty cycle. The SMPS can achieve efficiencies of up to 95% by avoiding the losses from the linear regulator’s voltage drop. The SMPS can also be more compact than a similarly rated linear AC-DC supply, as the high frequency transformer and filter/reservoir capacitors are much smaller.

The main drawback for the SMPS is that it must have a minimum load. No-load conditions can damage the supply. To avoid this condition, designers often use a power resistor as a dummy load. This resistor is intended to draw the minimum specified load if the main load is detached. Naturally, the dummy resistor will dissipate power, which will have an effect on the overall supply efficiency and will need to be considered when specifying the resistor. Another way to circumvent this problem is to use a shunt resistor across the output if the load goes open circuit. Other resistors are also used in SMPS designs for safety purposes. Low-ohm, high-power resistors often protect against over-voltage conditions. Current limiting designs protect against short-circuits.

This type of switching technology is also used in DC-DC converter designs to change one value of DC voltage to another. Buck converters are very similar in operation to the SMPS design described previously. Boost converters output a higher voltage than the input using charge pump techniques. Both technologies use similar ways to regulate the output voltage and for circuit protection.

Other uses of resistors in power-supply designs

Bleed resistors are mainly used to discharge capacitors in the circuit. They are situated in parallel with the load and are used in AC-DC and DC-DC converters for discharging the smoothing capacitors and reservoir capacitors respectively. The capacitors maintain their charge after the supply is switched off and can be hazardous to users. There are two main points to balance when choosing resistors for this task: they should be a high enough resistance to consume little power when the circuit is operational, while being low enough value to discharge the capacitors quickly.

Inrush limiting resistors limit the amount of current that can surge when AC-DC supplies are initially switched on and the storage capacitor is charging. These resistors are usually of a very low value and are designed in series with the AC power line. For higher-power supplies, negative temperature coefficient (NTC) resistors are often used for this purpose. These resistors have a resistance that drops as they self-heat. One downside to using this type of resistor is that during operation the temperature must be kept regular to ensure the low resistance is maintained. A third type of solution involves using pulse-resistant resistors, which are normally energy-rated in Joules. This gives a better idea of their capabilities than the normal continuous power rating that wattage designates.

Balancing resistors modulate a load current when using more than a single supply. Often, using more than one DC-DC converter in a parallel arrangement can be cheaper, while also being more energy efficient and compact than using a single high power supply. When designing this type of circuit, it is not possible to just tie the outputs together; there must be a way to ensure the load is shared equally. Figure 3 shows the R SHARE resistors taking up the slack between the converter outputs.

Balancing resistors share load between DC-DC converters
Figure 3 Balancing resistors share load between DC-DC converters

This method of load sharing is also used in other types of power-supply designs, especially those using power transistors. Multiple transistors in parallel supply the load, and load-sharing resistors are used in series.

Another occasion where balancing is required is shown in Figure 4. In this scenario, reservoir capacitors are designed in series to the DC supply output. The electrolytic capacitors’ leakage currents act like a resistance in parallel with the capacitor, RL1 and RL2 in the diagram. These resistance values can vary considerably, and since they act as a voltage divider across the output it can cause a voltage disparity across the capacitor, potentially exceeding the capacitor’s rating. Matched resistors RB1 and RB2 counteract this effect.

Balancing resistors ensures equal voltages across output capacitors
Figure 4 Balancing resistors ensures equal voltages across output capacitors

High voltage dividers are used to provide the feedback to the regulation circuit. These resistors can often have a secondary purpose, such as monitoring the high voltage supply in defibrillators, charging the storage capacitor and switching off the supply at the desired charge level.

High current sensing is used for measuring the supply current. The measurement is made using shunt ammeter principles, where a low value resistor is placed in series and the voltage drop is measured to calculate the current. A designer of this type of circuit must choose between a low value resistor to minimize heat generated and the loss of power, and a high resistance for easier measurement.

Summary

Almost every application for resistors in power supply design has different specification priorities and performance requirements. These include resistors that need to be able to handle high voltage, current and power, as well as ones that require low tolerances. Often specialized attributes are needed, like surge capability or negative TCR.

Related Posts

Capacitors

Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

21.3.2023
76
Market & Supply Chain

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

20.3.2023
23
Capacitors

Flying Capacitors Explained

17.3.2023
45

Upcoming Events

Mar 19
March 19 - March 23

APEC 2023

Apr 3
April 3 @ 12:00 - April 4 @ 14:00 CEST

Microelectronic Packaging Failure Modes and Analysis

Apr 5
11:00 - 12:00 CEST

Plugging – Filling – Tenting; WE PCB Webinar

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.