Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Introduces High Current 80VDC Board-Mount EMI Filters

    Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Sumida Announces New DC Common Mode Choke Coil Series

    KYOCERA AVX Releases New 3dB Hybrid Couplers

    SCHURTER Unveils High Voltage Fuses for EV Applications

    YAGEO Releases First to Market 750V Aluminum Capacitors

    binder Introduces M9 Compact Circular Connector

    Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Introduces High Current 80VDC Board-Mount EMI Filters

    Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Sumida Announces New DC Common Mode Choke Coil Series

    KYOCERA AVX Releases New 3dB Hybrid Couplers

    SCHURTER Unveils High Voltage Fuses for EV Applications

    YAGEO Releases First to Market 750V Aluminum Capacitors

    binder Introduces M9 Compact Circular Connector

    Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

How Cell Balancing Methods Affects Capacitor Selection

17.8.2023
Reading Time: 4 mins read
A A

This article based on Knowles Precision Devices blog discusses active vs. passive cell balancing methods in EV vehicles and how active cell balancing affects capacitor selection.

As electric vehicle (EV) manufacturers work to make batteries more affordable and easier to produce in mass quantities, we’re seeing changes in battery chemistry.

RelatedPosts

Learn How Supercapacitors Enhance Power System in Knowles eBook

Role of High-Q Ceramic Filters to Overcome GNSS Jamming

Knowles Extends Range and Performance of C0G MLCC Capacitors

For example, the industry is shifting from traditional lithium ion batteries with cobalt to lithium iron phosphate (LFP) batteries. Rare-earth metals like cobalt are in short supply, and materials like LFP are a more plentiful, sustainable, and efficient alternative.

At Knowles Precision Devices, we’re interested in trends in battery chemistry because they’re inspiring battery management system (BMS) advancements. A BMS is responsible for monitoring and controlling battery stack performance by managing temperature, performing state-of-charge (SoC) estimations, and carrying out cell balancing.

While passive cell balancing was once the more common technique, some EV manufacturers are shifting to active cell balancing in response to BMS advancements. This change impacts component selection at all levels, including capacitor selection. BMS with active cell balancing technology calls for specially designed, high-quality capacitors.

Figure 1: With active balancing (bottom), charge is redistributed from the stronger to weaker cells; the result is a fully depleted battery stack. With passive balancing (top), unused capacity remains. Source.

Active vs. Passive Cell Balancing

Maintaining a healthy battery SoC extends battery life and prevents damage caused at the extremes of charging and discharging. Both active and passive cell balancing techniques aim to maintain a healthy SoC. Since weak battery cells tend to charge and discharge faster than stronger or higher capacity cells, they have more of an impact on system runtime.

Passive cell balancing aims to equalize the SoC among cells in the battery stack by focusing on cells with the lowest capacity, also known as “weak” cells. The goal of this technique is to make each battery in the stack look like the weakest cell in terms of capacity. Balance is accomplished using a relatively low current to drain energy from cells with a high SoC. This ensures that all cells charge to their maximum SoC, regardless of their true capacity, and that charging can continue until each cell is fully charged. While this technique achieves balance at a comparably low expense, it doesn’t improve the runtime of the system. Further, the discharge process wastes energy.

Unlike passive cell balancing, which dissipates charge, active cell balancing redistributes charge. Active cell balancing is a more complex technique with a larger footprint, but it results in better runtime by increasing the amount of usable charge in the battery stack, as shown in Figure 1. Redistributing charge from stronger cells to weaker cells during charge and discharge cycles also decreases overall charge time and heat generation.

How Active Cell Balancing Affects Capacitor Selection

Fundamental design changes, like the shift from passive to active cell balancing, require board-level adjustments—including new capacitors. Capacitors act as intermediary energy storage devices in active balancing systems throughout the charging cycle.

The “flying” capacitor multilevel inverter is emerging as a strong choice for active cell balancing since they can temporarily store and release energy; they’re particularly useful for balancing voltage levels and optimizing available voltage. Flying capacitors accomplish this by connecting to higher voltage cells during the charging phase and lower voltage cells during discharge. This concept is sometimes referred to as “charge shuttling.”

Knowles Precision Devices’ expert team of engineers has decades of experience in high-reliability ceramic capacitors, and we’re ready to support you in selecting components to improve your BMS. 

Related

Source: Knowles Precision Devices

Recent Posts

TDK Introduces High Current 80VDC Board-Mount EMI Filters

2.7.2025
18

Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

2.7.2025
9

TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

1.7.2025
18

Sumida Announces New DC Common Mode Choke Coil Series

1.7.2025
12

SCHURTER Unveils High Voltage Fuses for EV Applications

30.6.2025
9

YAGEO Releases First to Market 750V Aluminum Capacitors

30.6.2025
40

Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

30.6.2025
19

Learn How Supercapacitors Enhance Power System in Knowles eBook

30.6.2025
19

TDK Releases Industry First 1uF 100V X7R MLCCs in 1608 Case

27.6.2025
20

YAGEO Expands One Turn Inductors for AI and High-Efficiency Power Applications

27.6.2025
36

Upcoming Events

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version