• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Insertion-loss measurements of ferrite absorber sheets

29.7.2019

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

20.3.2023

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

20.3.2023

Flying Capacitors Explained

17.3.2023

TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

16.3.2023

ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

16.3.2023

Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

15.3.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    TDK Extends Range of Industrial Single Pair Ethernet (SPE) Inductors

    Premo Unveils New series of 11kW 3-Phase On-Board Charger Transformers

    TAIYO YUDEN Releases 150C Automotive Power Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    TDK Extends Range of Industrial Single Pair Ethernet (SPE) Inductors

    Premo Unveils New series of 11kW 3-Phase On-Board Charger Transformers

    TAIYO YUDEN Releases 150C Automotive Power Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Insertion-loss measurements of ferrite absorber sheets

29.7.2019
Reading Time: 8 mins read
0 0
0
SHARES
219
VIEWS

Source: EDN blog

by Kenneth Wyatt, president and principal consultant of Wyatt Technical Services.

The development of stealth aircraft brought about the use of ferrite absorber sheets, which have proven useful for damping cavity resonances at microwave frequencies. Since then, ferrite absorber sheets have become useful at mitigating EMI. Most absorber sheets act as magnetic shields that help “redirect” magnetic fields and become effective at gigahertz frequencies. As my measurements show, some are effective even at much lower frequencies, serving as shielding or absorbers for high-frequency EMI from clock harmonics in the hundreds of megahertz.
I’ve used these absorbers for my EMC clients to help shield or absorb harmonic energy in the GHz frequencies. One client had transmitter high-order harmonics well into the gigahertz band and I found the absorber, when placed under the circuit board, reduced the harmonics by 8 dB to 14 dB between 2 GHz to 6 GHz. More often, however, I need something effective in the LTE cellular frequency range of 700 MHz to 900 MHz and it seems few absorber materials are very effective in this range. I needed a quick way to characterize the many absorber materials I had at hand.

Unfortunately, manufacturers of these materials rarely show the absorptive properties versus frequency, but rather the permeability curves. While higher permeability materials usually mean better shielding at lower frequencies, EMC engineers are more interested in specific absorption (in dB) versus frequency, such information makes it easier to specify the correct material, depending on the application. I’ve made these measurements and present my results here. Figure 1 shows the tested samples.


Figure 1. Measurements for insertion loss covered a variety of ferrite absorber sheets. Photo by Kenneth Wyatt.

Würth Elektronik has a useful application note, ANP022, “Selection and Characteristics of WE-FSFS (Flexible Sintered Ferrite Sheet)” that shows a simple measurement technique for determining the insertion loss versus frequency. Using this technique, I was able to test the samples in less than one hour.

The overall test setup was simple, requiring only a spectrum analyzer with tracking generator (Siglent SSA3032X) and a 50-Ω microstrip transmission line (Figure 2).


Figure 2
. The test setup showing the spectrum analyzer and tracking generator connected to each end of the 50-Ω transmission line. Photo by Kenneth Wyatt.

Once the transmission line is normalized, we merely place and hold the sample absorber on top of the microstrip. Generally, I measured from 100 MHz to 3.2 GHz (the upper limit of my analyzer). I always made sure there was the tear-off plastic strip against the microstrip, rather than the raw ferrite. See Figure 3.


Figure 3
. Example of an absorber measurement. Each sample was simply held down against the microstrip. Photo by Kenneth Wyatt.

Placing the absorber on top of the microstrip will absorb an increasing amount of magnetic flux as frequency is increased. This will be indicated by the increase in insertion loss in the display. I suspect the loss will increase as the sample size is increased, but didn’t explore that aspect in detail.

Samples were tested from 3M, Arc-Tech, Chomerics, NEC/Tokin, and Würth Elektronik. Specific part numbers are within the captions below. Listed in alphabetical order. Figure 4 covers 3M while figures 5, 6, and 7 show results for Arc-Tech. Page 2 covers materials from Parker Chomerics, NEC, and Würth Elektronik.


Figure 4. Insertion loss for 3M P/N CN-3190 (yellow) and AB50105 (violet). Sample size: 7.5×8 cm and 10.5×14.5 cm, respectively.


Figure 5. Arc-Tech’s WAVE-X P/N LS10055 (yellow). Sample size: 15×15 cm.


Figure 6. Arc-Tech’s WAVE-X P/N SB1007040 (yellow) and SB1007020 (violet). Sample size: 15×15 cm.


Figure 7. Arc-Tech’s WAVE-X P/N WXA10 (yellow) and WXA20 (violet). Sample size: 15×15 cm.

The Arc-Tech WX-A series had excellent insertion loss of 10 to 40 dB above 1 GHz and should prove useful for applications in the cellular, GPS, and 2.4 GHz Wi-Fi bands.

 

Figure 8. Parker Chomerics P/N SS4850-0100 (yellow), SS4850-0150 (violet), and SS4850-0300 (blue). Sample size: 6.5×13 cm, 12×13 cm, and 12×13 cm, respectively.

The Chomerics material is unique in that it has substantial absorption properties starting around 20 MHz and increasing to 20 dB insertion loss above 1 GHz. As you can see, I had to greatly expand the frequency span to capture the whole picture.

Figure 9 and Figure 10 look at products from NEC.


Figure 9. NEC P/N EFR(01) (yellow), FK2(03) (violet), and R4N(01) (blue). Sample size: all 8×8 cm.


Figure 10. NEC P/N R4N(04) (yellow), and K4E(05) (violet). Sample size: all 8×8 cm.

Generally, materials from Würth Elektronik are more effective in the higher gigahertz frequency bands. See Figure 11 for an example frequency plot from the company’s application note.


Figure 11. Insertion loss versus frequency for the typical Würth Elektronik “WE-FSFS” samples. Figure courtesy of Würth Elektronik.

Note that this set of curves extends out to 6 GHz, but yields just a nominal 3 dB to 9 dB insertion loss at that extreme. This is actually pretty typical for most of the absorber material I measured, where they are most useful in the higher GHz frequencies.


Figure 12. Würth Elektronik P/N 354001 (yellow), 354002 (violet), and 354003 (blue). Sample size: all 12 x 12 cm. These are approaching 8 to 10 dB insertion loss at 3 GHz.

 


Figure 13. Würth Elektronik P/N 354004 (yellow), 354005 (violet), and 354006 (blue). Sample size: all 6×6 cm.

 


Figure 14. Würth Elektronik P/N 364001 (yellow), 364002 (violet), and 364003 (blue). Sample size: all 12×12 cm. These are approaching 6 dB to 8 dB insertion loss at 3 GHz.


Figure 15. Würth Elektronik P/N 364004 (yellow), 364005 (violet), and 364006 (blue). Sample size: all 6×6 cm.

 

I hope this information is useful to you as you’re designing smaller wireless products, where every bit of shielding and attenuation of self-generated EMI is important. Würth Elektronik described some alternative ways of characterizing ferrite absorber sheets, but the microstrip method was quick and easy.
Featured image: Sintered flexible ferrite magnetic shields, credit Würth Elektronik
References

  1. Würth Elektronik Applications Note ANP022, Selection and Characteristics of WE-FSFS
  2. Würth Elektronik, Trilogy of Magnetics (5th Edition)
  3. IoT: The Interference of Things, Martin Rowe, EDN
  4. Platform interference, Kenneth Wyatt, EDN

RelatedPosts

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

Flying Capacitors Explained

Source: EDN blog

by Kenneth Wyatt, president and principal consultant of Wyatt Technical Services.

The development of stealth aircraft brought about the use of ferrite absorber sheets, which have proven useful for damping cavity resonances at microwave frequencies. Since then, ferrite absorber sheets have become useful at mitigating EMI. Most absorber sheets act as magnetic shields that help “redirect” magnetic fields and become effective at gigahertz frequencies. As my measurements show, some are effective even at much lower frequencies, serving as shielding or absorbers for high-frequency EMI from clock harmonics in the hundreds of megahertz.
I’ve used these absorbers for my EMC clients to help shield or absorb harmonic energy in the GHz frequencies. One client had transmitter high-order harmonics well into the gigahertz band and I found the absorber, when placed under the circuit board, reduced the harmonics by 8 dB to 14 dB between 2 GHz to 6 GHz. More often, however, I need something effective in the LTE cellular frequency range of 700 MHz to 900 MHz and it seems few absorber materials are very effective in this range. I needed a quick way to characterize the many absorber materials I had at hand.

Unfortunately, manufacturers of these materials rarely show the absorptive properties versus frequency, but rather the permeability curves. While higher permeability materials usually mean better shielding at lower frequencies, EMC engineers are more interested in specific absorption (in dB) versus frequency, such information makes it easier to specify the correct material, depending on the application. I’ve made these measurements and present my results here. Figure 1 shows the tested samples.


Figure 1. Measurements for insertion loss covered a variety of ferrite absorber sheets. Photo by Kenneth Wyatt.

Würth Elektronik has a useful application note, ANP022, “Selection and Characteristics of WE-FSFS (Flexible Sintered Ferrite Sheet)” that shows a simple measurement technique for determining the insertion loss versus frequency. Using this technique, I was able to test the samples in less than one hour.

The overall test setup was simple, requiring only a spectrum analyzer with tracking generator (Siglent SSA3032X) and a 50-Ω microstrip transmission line (Figure 2).


Figure 2
. The test setup showing the spectrum analyzer and tracking generator connected to each end of the 50-Ω transmission line. Photo by Kenneth Wyatt.

Once the transmission line is normalized, we merely place and hold the sample absorber on top of the microstrip. Generally, I measured from 100 MHz to 3.2 GHz (the upper limit of my analyzer). I always made sure there was the tear-off plastic strip against the microstrip, rather than the raw ferrite. See Figure 3.


Figure 3
. Example of an absorber measurement. Each sample was simply held down against the microstrip. Photo by Kenneth Wyatt.

Placing the absorber on top of the microstrip will absorb an increasing amount of magnetic flux as frequency is increased. This will be indicated by the increase in insertion loss in the display. I suspect the loss will increase as the sample size is increased, but didn’t explore that aspect in detail.

Samples were tested from 3M, Arc-Tech, Chomerics, NEC/Tokin, and Würth Elektronik. Specific part numbers are within the captions below. Listed in alphabetical order. Figure 4 covers 3M while figures 5, 6, and 7 show results for Arc-Tech. Page 2 covers materials from Parker Chomerics, NEC, and Würth Elektronik.


Figure 4. Insertion loss for 3M P/N CN-3190 (yellow) and AB50105 (violet). Sample size: 7.5×8 cm and 10.5×14.5 cm, respectively.


Figure 5. Arc-Tech’s WAVE-X P/N LS10055 (yellow). Sample size: 15×15 cm.


Figure 6. Arc-Tech’s WAVE-X P/N SB1007040 (yellow) and SB1007020 (violet). Sample size: 15×15 cm.


Figure 7. Arc-Tech’s WAVE-X P/N WXA10 (yellow) and WXA20 (violet). Sample size: 15×15 cm.

The Arc-Tech WX-A series had excellent insertion loss of 10 to 40 dB above 1 GHz and should prove useful for applications in the cellular, GPS, and 2.4 GHz Wi-Fi bands.

 

Figure 8. Parker Chomerics P/N SS4850-0100 (yellow), SS4850-0150 (violet), and SS4850-0300 (blue). Sample size: 6.5×13 cm, 12×13 cm, and 12×13 cm, respectively.

The Chomerics material is unique in that it has substantial absorption properties starting around 20 MHz and increasing to 20 dB insertion loss above 1 GHz. As you can see, I had to greatly expand the frequency span to capture the whole picture.

Figure 9 and Figure 10 look at products from NEC.


Figure 9. NEC P/N EFR(01) (yellow), FK2(03) (violet), and R4N(01) (blue). Sample size: all 8×8 cm.


Figure 10. NEC P/N R4N(04) (yellow), and K4E(05) (violet). Sample size: all 8×8 cm.

Generally, materials from Würth Elektronik are more effective in the higher gigahertz frequency bands. See Figure 11 for an example frequency plot from the company’s application note.


Figure 11. Insertion loss versus frequency for the typical Würth Elektronik “WE-FSFS” samples. Figure courtesy of Würth Elektronik.

Note that this set of curves extends out to 6 GHz, but yields just a nominal 3 dB to 9 dB insertion loss at that extreme. This is actually pretty typical for most of the absorber material I measured, where they are most useful in the higher GHz frequencies.


Figure 12. Würth Elektronik P/N 354001 (yellow), 354002 (violet), and 354003 (blue). Sample size: all 12 x 12 cm. These are approaching 8 to 10 dB insertion loss at 3 GHz.

 


Figure 13. Würth Elektronik P/N 354004 (yellow), 354005 (violet), and 354006 (blue). Sample size: all 6×6 cm.

 


Figure 14. Würth Elektronik P/N 364001 (yellow), 364002 (violet), and 364003 (blue). Sample size: all 12×12 cm. These are approaching 6 dB to 8 dB insertion loss at 3 GHz.


Figure 15. Würth Elektronik P/N 364004 (yellow), 364005 (violet), and 364006 (blue). Sample size: all 6×6 cm.

 

I hope this information is useful to you as you’re designing smaller wireless products, where every bit of shielding and attenuation of self-generated EMI is important. Würth Elektronik described some alternative ways of characterizing ferrite absorber sheets, but the microstrip method was quick and easy.
Featured image: Sintered flexible ferrite magnetic shields, credit Würth Elektronik
References

  1. Würth Elektronik Applications Note ANP022, Selection and Characteristics of WE-FSFS
  2. Würth Elektronik, Trilogy of Magnetics (5th Edition)
  3. IoT: The Interference of Things, Martin Rowe, EDN
  4. Platform interference, Kenneth Wyatt, EDN

Related Posts

Market & Supply Chain

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

20.3.2023
4
Inductors

TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

16.3.2023
33
Market & Supply Chain

ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

16.3.2023
73

Upcoming Events

Mar 20
March 19 - March 23

APEC 2023

Mar 22
14:00 - 15:00 CET

Parasitic Components in Power Converters – Fundamentals and Measurements Rohde & Schwarz Webinar

Apr 3
April 3 @ 12:00 - April 4 @ 14:00 CEST

Microelectronic Packaging Failure Modes and Analysis

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.