Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Wk 46 Electronics Supply Chain Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finland 

    Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

    Murata Expands High Rel NTC Thermistors in Compact 0603M Size

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Wk 46 Electronics Supply Chain Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finland 

    Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

    Murata Expands High Rel NTC Thermistors in Compact 0603M Size

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Introduction of Press-Fit Assembly on Aluminum Electrolytic Capacitors

29.4.2020
Reading Time: 4 mins read
A A

Can Press-Fit capacitors still deliver the necessary robustness and electrical connection? Read quick overview by Wilmer Companioni, Kemet Technical Marketing Team Leader.

It’s a simple concept, just press the pins into the holes and voila, you’ve installed your capacitor. One the face of it, it doesn’t sound like it is a very solid assembly, but we put a lot of thought into how we can bring the reliability you’re used to with our aluminum electrolytic Press-Fit capacitors. We’ll get into how this very simple method of assembly can still deliver the necessary robustness and electrical connection.

RelatedPosts

Wk 46 Electronics Supply Chain Digest

Overvoltage and Transient Protection for DC/DC Power Modules

Choosing the Right Capacitor: The Importance of Accurate Measurements

What is Press-Fit?

There are many ways to mount components onto a board. The two most popular processes are surface mount technology and through-hole technology. Both of those processes use solder to mechanically affix components to the board.

One mounting technology type that has become increasingly popular is Press-Fit. This consists of “pins” that are capable of exerting lateral force on the holes in which they are inserted. Press-Fit has been successfully used in many electronics, such as IGBT modules for some time. KEMET is among the first to apply a Press-Fit connection to capacitors.

So, is it better than solder?

The question here is one that attempts to compare the mechanical robustness of solder-in connections with a press-fit connection. To take full advantage of a press-fit connection it requires a laying down additional copper tracking around the connections and full plated through hole.

The real question here is, “Is a press-fit connection as mechanically sound as a solder-in connection?” A bit of a loaded question if you ask me as the failure mode of a Press-Fit connection is slightly different than that of a solder-down connection.

Many times, large electrolytic capacitors are mechanically clamped to the casing because either solder-in or press-fit, such large components can create large amounts of torque on the board. Ultimately when equivalently affixed, solder-in connections and press-fit connections exhibit similar performance. The following is an example of a comparison of vibration performance.

An Option for Serviceability

Perhaps the biggest advantage of Press-Fit connections is that they can be more easily serviced. Our aluminum electrolytic capacitors are designed for long service life. Even so, sometimes these need to be serviced.

Using solder-in methods replacing a component can be a challenge. The equipment in which these components live are usually ones that must be continuously operational or there can be fines for down-time, such as power distribution systems. The less time the system is down the better. Replacing solder-in components may sometimes take hours but the replacement of press-fit items is more on the order of minutes.

Is Press-Fit Right for Me?

As with any good question, that depends. Press-Fit offers a favorable mix of serviceability with reliability. And that is the message of Press-Fit, being able to deliver a robust mechanical and electrical connection without sacrificing the necessary mechanical reliability of a system.

The only real way to know is to try out Press-Fit for yourself. While not a drop-in replacement for through-hole or snap-in connections, you can find you necessary combination of capacitance, voltage, and size. Check out Kemet offering of Press-Fit capacitors here.

Related

Recent Posts

Overvoltage and Transient Protection for DC/DC Power Modules

13.11.2025
30

Choosing the Right Capacitor: The Importance of Accurate Measurements

12.11.2025
48

Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

12.11.2025
8

Skeleton Opens SuperBattery Factory in Finland 

12.11.2025
21

Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

12.11.2025
8

Murata Expands High Rel NTC Thermistors in Compact 0603M Size

12.11.2025
9

RF Inductors: Selection and Design Challenges for High-Frequency Circuits

10.11.2025
57

Transformer Safety IEC 61558 Standard

7.11.2025
36

ESR of Capacitors, Measurements and Applications

7.11.2025
115

Upcoming Events

Dec 2
December 2 @ 12:00 - December 4 @ 14:15 CET

Microwave Packaging Technology

Dec 9
December 9 @ 12:00 - December 11 @ 14:15 EST

Space and Military Standards for Hybrids and RF Microwave Modules

Dec 10
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version