Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK and NIPPON CHEMICAL to Establish Joint Venture for MLCC Material Development

    Passive Components for Next Gen Automotive Systems

    ROHM Expands Its High-Accuracy EROM Models for Shunt Resistors

    Samsung Presents Worlds First 100V 22nF Automotive MLCC in 0402 Size

    Circular Connectors Coding

    binder Presents Harsh Environment Connector for Outdoor Environments

    DigiKey Introduces Industry-First Power Supply Configuration Tool

    Bourns Releases High Precision Power Resistor for High-Energy Pulse Applications

    Modelithics Unveils COMPLETE Library v25.7 for Cadence AWR Design Environment

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK and NIPPON CHEMICAL to Establish Joint Venture for MLCC Material Development

    Passive Components for Next Gen Automotive Systems

    ROHM Expands Its High-Accuracy EROM Models for Shunt Resistors

    Samsung Presents Worlds First 100V 22nF Automotive MLCC in 0402 Size

    Circular Connectors Coding

    binder Presents Harsh Environment Connector for Outdoor Environments

    DigiKey Introduces Industry-First Power Supply Configuration Tool

    Bourns Releases High Precision Power Resistor for High-Energy Pulse Applications

    Modelithics Unveils COMPLETE Library v25.7 for Cadence AWR Design Environment

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

KEMET Tantalum Polymer Capacitors Set New Performance in Automotive and Super Computing

12.6.2019
Reading Time: 2 mins read
A A

Source: Kemet news

Extended life, single digit ESR, CV and volumetric efficiency performance enable T598 devices to provide component solutions for ADAS, autonomous driving and digitalization.

RelatedPosts

Bourns Extends High Power Thick Film Resistors with Four New Series

TDK and NIPPON CHEMICAL to Establish Joint Venture for MLCC Material Development

Passive Components for Next Gen Automotive Systems

FORT LAUDERDALE, Fla., June 6, 2019 — KEMET Corporation (“KEMET” or the “Company”) (NYSE: KEM), a leading global supplier of electronic components, today expanded the temperature capability of T598 devices, a first-to-market Tantalum Polymer Surface Mount Capacitor.

These devices uniquely address the stringent requirements and new challenges presented by megatrend applications in automotive Advanced Driver Assistance Systems (ADAS), autonomous driving and in digitalization uses such as supercomputing, mobility services, connectivity and infotainment. T598 automotive grade polymer electrolytic devices combine multiple high-performance characteristics including high capacitance / voltage (CV) ratings, single digit equivalent series resistance (ESR), class-leading ripple performance, and ultra-extended life to truly enable the development and deployment of exciting and revolutionary technologies.

AEC-200 qualified T598 devices have excellent volumetric efficiency, which in tandem with high capacitance values now up to 470μF, voltage offerings of 2.5VDC – 50VDC and new single digit ESR, means single components can be used where current solutions dictate that multiple devices must be used. Therefore, KEMET’s new devices can help designers achieve both vital board real estate and cost savings.

Robust and stable performance to 2000 hours at temperatures to 125°C – equating to an ultra-extended mission profile of around 15 years – aligns with the requirements for vehicle applications ranging from ADAS features such as blind spot detection, adaptive cruise control and emergency brake assist, to safety systems including airbag occupant detection and alarm systems and electronic stability control.

The increase in electronic content on vehicles to enable ADAS, comfort and convenience and connectivity as well as the transition to hybrid and fully electrified powertrains, and ultimately fully autonomous driving, creates new opportunities for companies like KEMET to develop component technologies that can satisfy performance and life requirements not previously seen in the sector. The T598 series provides the latest example of this being achieved.

Commenting on the temperature capability extension of the Company’s automotive grade polymer electrolytic devices, Dr. Philip Lessner, KEMET Senior Vice President and Chief Technology Officer, said, “The developments and megatrends we are witnessing in the automotive sector and in areas such as 5G base stations and cloud computing server farms are dramatic, exciting and more significant than anything seen in decades. In order for these megatrends to maintain their momentum and deliver the end products being developed, component technologies that achieve new performance levels across multiple criteria are essential. The T598 family is a perfect example of this and will allow electronic design engineers to evolve their concepts to reality.”

For more information on KEMET’s T598 Tantalum Polymer Capacitors, please visit http://go.kemet.com/T598-2000hrs.

Related

Recent Posts

TDK and NIPPON CHEMICAL to Establish Joint Venture for MLCC Material Development

27.11.2025
1

Passive Components for Next Gen Automotive Systems

26.11.2025
18

ROHM Expands Its High-Accuracy EROM Models for Shunt Resistors

26.11.2025
8

Samsung Presents Worlds First 100V 22nF Automotive MLCC in 0402 Size

26.11.2025
8

YAGEO Expands Aluminum Capacitors with 80V Ratings for 48V Automotive and Industrial Systems

25.11.2025
15

Knowles Doubles Capacitance of its Class I Ceramic C0G Capacitors

24.11.2025
25

Vishay Extends Automotive TO-220 Thick Film Power Resistors with 30W Option

19.11.2025
18

Rubycon Releases High Capacitance Radial Lead Aluminum Electrolytic Capacitors

18.11.2025
24

October 2025 ECIA US Components Sales Sentiment Remains Strong but Weakens in November

18.11.2025
33

Upcoming Events

Dec 2
December 2 @ 12:00 - December 4 @ 14:15 CET

Microwave Packaging Technology

Dec 9
December 9 @ 12:00 - December 11 @ 14:15 EST

Space and Military Standards for Hybrids and RF Microwave Modules

Dec 10
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version