Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

    ESA Call for Papers 6th Space Passive Component Days – SPCD 2026

    Würth Elektronik Offers Halogen‑Free EMC Gaskets for Displays and Housings

    Component Distribution Supply Chain January 2026

    Binder Unveils M8 Flange Solder Connectors for Flexible Cabling

    Power Electronics Tools for Passives and Magnetic Designs

    Modelithics Releases Component Model Library for SIMULIA CST Studio Suite

    Exxelia Publishes Micropen White Papers for Printed Electronics

    Stackpole Releases AlN High‑Power Thick Film Chip Resistors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

    ESA Call for Papers 6th Space Passive Component Days – SPCD 2026

    Würth Elektronik Offers Halogen‑Free EMC Gaskets for Displays and Housings

    Component Distribution Supply Chain January 2026

    Binder Unveils M8 Flange Solder Connectors for Flexible Cabling

    Power Electronics Tools for Passives and Magnetic Designs

    Modelithics Releases Component Model Library for SIMULIA CST Studio Suite

    Exxelia Publishes Micropen White Papers for Printed Electronics

    Stackpole Releases AlN High‑Power Thick Film Chip Resistors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

KEMET Tantalum Polymer Capacitors Set New Performance in Automotive and Super Computing

12.6.2019
Reading Time: 2 mins read
A A

Source: Kemet news

Extended life, single digit ESR, CV and volumetric efficiency performance enable T598 devices to provide component solutions for ADAS, autonomous driving and digitalization.

RelatedPosts

CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

ESA Call for Papers 6th Space Passive Component Days – SPCD 2026

Würth Elektronik Offers Halogen‑Free EMC Gaskets for Displays and Housings

FORT LAUDERDALE, Fla., June 6, 2019 — KEMET Corporation (“KEMET” or the “Company”) (NYSE: KEM), a leading global supplier of electronic components, today expanded the temperature capability of T598 devices, a first-to-market Tantalum Polymer Surface Mount Capacitor.

These devices uniquely address the stringent requirements and new challenges presented by megatrend applications in automotive Advanced Driver Assistance Systems (ADAS), autonomous driving and in digitalization uses such as supercomputing, mobility services, connectivity and infotainment. T598 automotive grade polymer electrolytic devices combine multiple high-performance characteristics including high capacitance / voltage (CV) ratings, single digit equivalent series resistance (ESR), class-leading ripple performance, and ultra-extended life to truly enable the development and deployment of exciting and revolutionary technologies.

AEC-200 qualified T598 devices have excellent volumetric efficiency, which in tandem with high capacitance values now up to 470μF, voltage offerings of 2.5VDC – 50VDC and new single digit ESR, means single components can be used where current solutions dictate that multiple devices must be used. Therefore, KEMET’s new devices can help designers achieve both vital board real estate and cost savings.

Robust and stable performance to 2000 hours at temperatures to 125°C – equating to an ultra-extended mission profile of around 15 years – aligns with the requirements for vehicle applications ranging from ADAS features such as blind spot detection, adaptive cruise control and emergency brake assist, to safety systems including airbag occupant detection and alarm systems and electronic stability control.

The increase in electronic content on vehicles to enable ADAS, comfort and convenience and connectivity as well as the transition to hybrid and fully electrified powertrains, and ultimately fully autonomous driving, creates new opportunities for companies like KEMET to develop component technologies that can satisfy performance and life requirements not previously seen in the sector. The T598 series provides the latest example of this being achieved.

Commenting on the temperature capability extension of the Company’s automotive grade polymer electrolytic devices, Dr. Philip Lessner, KEMET Senior Vice President and Chief Technology Officer, said, “The developments and megatrends we are witnessing in the automotive sector and in areas such as 5G base stations and cloud computing server farms are dramatic, exciting and more significant than anything seen in decades. In order for these megatrends to maintain their momentum and deliver the end products being developed, component technologies that achieve new performance levels across multiple criteria are essential. The T598 family is a perfect example of this and will allow electronic design engineers to evolve their concepts to reality.”

For more information on KEMET’s T598 Tantalum Polymer Capacitors, please visit http://go.kemet.com/T598-2000hrs.

Related

Recent Posts

CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

28.1.2026
13

ESA Call for Papers 6th Space Passive Component Days – SPCD 2026

28.1.2026
14

Würth Elektronik Offers Halogen‑Free EMC Gaskets for Displays and Housings

28.1.2026
10

Samsung Q4 2025 Results: MLCC focus for AI, Server and Automotive

26.1.2026
45

Würth Elektronik Developed a Custom Transformer for Active Hand Orthosis

26.1.2026
34

Capacitor Technology Dossier

26.1.2026
68

ROHM Extends 2012 Shunt Resistors Power Rating up to 1.25 W

23.1.2026
23

Passive Components in Quantum Computing

22.1.2026
118

0603 Automotive Chip Varistors as TVS Diode Replacements, TDK Tech Note

21.1.2026
29

Upcoming Events

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

Mar 3
16:00 - 17:00 CET

Cybersecurity at the Eleventh Hour – from RED to CRA – Information and Discussion

Mar 21
All day

PSMA Capacitor Workshop 2026

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version