• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication
Simplified schematic picture of the studied device, showing electrical and thermal generation of spin currents in a bilayer graphene/CrSBr heterostructure. The magnetic Co electrodes are used to determine the degree of proximity induced spin polarization in the bilayer graphene, where the magnetization of the outer-most layer of CrSBr (Mcsb) allows for higher conductivity of the spin-up electrons (red arrows).| Illustration Talieh Ghiasi, RUG

Magnetic Graphene – Towards 2D Electronics and Magnets without Metals

18.5.2021

KAMIC Group Acquires Wound Components Specialist AGW Electronics

2.6.2023

4th PCNS Registration Opens !

2.6.2023

Ceramic Capacitors Benefits in Military SiC Converters

1.6.2023

Exploring Frenetic and Maxwell Options for an Optimal Transformer Performance in LLC Circuit

31.5.2023

TT Electronics Unveils Busbar Shunt Resistors

31.5.2023

Bourns Releases New Power NTC Thermistors

31.5.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    KAMIC Group Acquires Wound Components Specialist AGW Electronics

    4th PCNS Registration Opens !

    Ceramic Capacitors Benefits in Military SiC Converters

    Exploring Frenetic and Maxwell Options for an Optimal Transformer Performance in LLC Circuit

    TT Electronics Unveils Busbar Shunt Resistors

    Bourns Releases New Power NTC Thermistors

    KYOCERA Developed Industry Leading 008004 Hi-Q MLCC for PA Modules

    MLCC Suppliers Reduced Production Capacity in 1H23 due to Weak Consumer Market Demand

    Introduction of Knowles MLCCs StackiCap, its Benefits and Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Exploring Frenetic and Maxwell Options for an Optimal Transformer Performance in LLC Circuit

    Fast 25kW SiC EV Charger Design; OnSemi and Würth Elektronik Webinar

    PFC Inductor Magnetic Design Considerations; Frenetic Webinar

    Introduction to Capacitor Technologies; WE Webinar

    Self-Adjusting and Economical Switched Capacitor Balancer for Serially Connected Storage-Cells

    How to Design EMC Efficient Power Converter; WE Webinar

    Selecting Capacitors for High Power Buck-Booster Converters

    How to use Off-the-Shelf Transformers in Switching Power Supplies

    Simple Capacitors Pre-Charger Based on Unique ‘Floating Integrator’

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    KAMIC Group Acquires Wound Components Specialist AGW Electronics

    4th PCNS Registration Opens !

    Ceramic Capacitors Benefits in Military SiC Converters

    Exploring Frenetic and Maxwell Options for an Optimal Transformer Performance in LLC Circuit

    TT Electronics Unveils Busbar Shunt Resistors

    Bourns Releases New Power NTC Thermistors

    KYOCERA Developed Industry Leading 008004 Hi-Q MLCC for PA Modules

    MLCC Suppliers Reduced Production Capacity in 1H23 due to Weak Consumer Market Demand

    Introduction of Knowles MLCCs StackiCap, its Benefits and Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Exploring Frenetic and Maxwell Options for an Optimal Transformer Performance in LLC Circuit

    Fast 25kW SiC EV Charger Design; OnSemi and Würth Elektronik Webinar

    PFC Inductor Magnetic Design Considerations; Frenetic Webinar

    Introduction to Capacitor Technologies; WE Webinar

    Self-Adjusting and Economical Switched Capacitor Balancer for Serially Connected Storage-Cells

    How to Design EMC Efficient Power Converter; WE Webinar

    Selecting Capacitors for High Power Buck-Booster Converters

    How to use Off-the-Shelf Transformers in Switching Power Supplies

    Simple Capacitors Pre-Charger Based on Unique ‘Floating Integrator’

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Magnetic Graphene – Towards 2D Electronics and Magnets without Metals

18.5.2021
Reading Time: 3 mins read
Simplified schematic picture of the studied device, showing electrical and thermal generation of spin currents in a bilayer graphene/CrSBr heterostructure. The magnetic Co electrodes are used to determine the degree of proximity induced spin polarization in the bilayer graphene, where the magnetization of the outer-most layer of CrSBr (Mcsb) allows for higher conductivity of the spin-up electrons (red arrows).| Illustration Talieh Ghiasi, RUG

Simplified schematic picture of the studied device, showing electrical and thermal generation of spin currents in a bilayer graphene/CrSBr heterostructure. The magnetic Co electrodes are used to determine the degree of proximity induced spin polarization in the bilayer graphene, where the magnetization of the outer-most layer of CrSBr (Mcsb) allows for higher conductivity of the spin-up electrons (red arrows).| Illustration Talieh Ghiasi, RUG

0
SHARES
0
VIEWS

For over a decade, graphene has been the most favourable 2D material for the transport of the spin information. However, graphene cannot generate spin current by itself unless its properties are appropriately modified. One way to achieve this is to make it act as a magnetic material.

The magnetism would favour the passage of one type of spin and thus create an imbalance in the number of electrons with spin-up versus spin-down. In magnetic graphene this would result in a highly spin-polarized current.

RelatedPosts

KAMIC Group Acquires Wound Components Specialist AGW Electronics

4th PCNS Registration Opens !

Ceramic Capacitors Benefits in Military SiC Converters

This idea had now been experimentally confirmed by the scientists in the Physics of Nanodevices group led by prof. Bart van Wees at the University of Groningen, Zernike institute for advanced materials. When they brought graphene in close proximity to a 2D layered antiferromagnet, CrSBr, they could directly measure a large spin-polarization of current, generated by the magnetic graphene.

Spin-logic

In spintronics, the magnetic moment of electrons (spin) is used to transfer and manipulate information. An ultra-compact 2D spin-logic circuitry could be built from 2D materials that can transport the spin information over long distances and also provide strong spin-polarization of charge current. Experiments by physicists at the University of Groningen (The Netherlands) and Colombia University (USA) suggest that magnetic graphene can be the ultimate choice for these 2D spin-logic devices as it efficiently converts charge to spin current and can transfer this strong spin-polarization over long distances. This discovery was published on 6 May in Nature Nanotechnology.

In the conventional graphene-based spintronic devices, ferromagnetic (cobalt) electrodes are used for injecting and detecting the spin signal into graphene. In contrast, in circuits built from magnetic graphene, the injection, transport and detection of the spins all can be done by the graphene itself, explains Talieh Ghiasi, first author of the paper.

‘We detect an exceptionally large spin-polarization of conductivity of 14% in the magnetic graphene that is also expected to be efficiently tuneable by a transverse electric field.’ This, together with the outstanding charge and spin transport properties of graphene allows for realization of all-graphene 2D spin-logic circuitries where the magnetic graphene alone can inject, transport and detect the spin information.

Moreover, the unavoidable heat dissipation that happens in any electronic circuitry is turned to an advantage in these spintronic devices. ‘We observe that the temperature gradient in the magnetic graphene due to the Joule heating is converted to spin current. This happens by the spin-dependent Seebeck effect that is also observed in graphene for the first time in our experiments,’ says Ghiasi. The efficient electrical and thermal generation of spin currents by the magnetic graphene promises substantial advances both for the 2D spintronic and spin-caloritronic technologies.

Magnets Without Metals: Magnetic Graphene

Discovery of magnetic graphene has been already made by scientists in 2017 at the Regional Centre of Advanced Technologies and Materials (RCPTM) at the Palacky University in Olomouc.

By using graphene, an ultrathin form of carbon, these scientists prepared the first non-metallic magnet that retains its magnetic properties up to room temperature. In doing so, they disproved the old belief that all materials with room temperature magnetism are based on metals or their compounds. Chemically modified magnetic graphene has a vast range of potential applications, particularly in the fields of biomedicine and electronics.

“For several years, we have suspected that the path to magnetic carbon could involve graphene –a single two-dimensional layer of carbon atoms. Amazingly, by treating it with other non-metallic elements such as fluorine, hydrogen, and oxygen, we were able to create a new source of magnetic moments that communicate with each other even at room temperature. This discovery is seen as a huge advancement in the capabilities of organic magnets,” says Radek Zbořil, a leading author of the project and director of RCPTM

The idea and study arose solely from the work of the Olomouc scientists, who also developed a theoretical model to explain the origin of magnetism in these carbon materials. “In metallic systems, magnetic phenomena result from the behavior of electrons in the atomic structure of metals. In the organic magnets that we have developed, the magnetic features emerge from the behavior of non-metallic chemical radicals that carry free electrons,” says Michal Otyepka, a co-creator of the theoretical model whose work on the project was conducted within the framework of a prestigious European Research Council (ERC) grant.

Related Posts

Market & Supply Chain

KAMIC Group Acquires Wound Components Specialist AGW Electronics

2.6.2023
2
Capacitors

4th PCNS Registration Opens !

2.6.2023
13
Inductors

Exploring Frenetic and Maxwell Options for an Optimal Transformer Performance in LLC Circuit

31.5.2023
14

Upcoming Events

Jun 13
June 13 @ 12:00 - June 16 @ 14:00 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Jun 14
11:00 - 12:00 CEST

STRETCH.flex 2.0 Stretchable PCB Technology to the Limits

Jun 20
June 20 @ 12:00 - June 22 @ 14:00 EDT

Copper and Gold Wire Bonding

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Filter Poles and Zeros Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.