Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Littelfuse Introduces Automotive Current Sensors for EV Battery, Motor, and Safety Systems

    Vishay Releases Fast Acting Thin Film Chip Fuses

    Mechanical Testing of Tantalum Anodes to Predict Tantalum Capacitor Quality

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    SCHURTER APO Pyrofuse Brings Active Safety for High-Voltage Systems

    Coilcraft Releases Worlds Smallest 0402 Ferrite-Core Wirewound Chip Inductor

    Panasonic Releases Compact Tactile Switch with 3N Operation Force and 500K Cycles Life

    Modelithics Unveils Qorvo GaN Library v25.5.9

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Littelfuse Introduces Automotive Current Sensors for EV Battery, Motor, and Safety Systems

    Vishay Releases Fast Acting Thin Film Chip Fuses

    Mechanical Testing of Tantalum Anodes to Predict Tantalum Capacitor Quality

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    SCHURTER APO Pyrofuse Brings Active Safety for High-Voltage Systems

    Coilcraft Releases Worlds Smallest 0402 Ferrite-Core Wirewound Chip Inductor

    Panasonic Releases Compact Tactile Switch with 3N Operation Force and 500K Cycles Life

    Modelithics Unveils Qorvo GaN Library v25.5.9

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Medical Imaging Quality Starts by Selecting the Right Non-Magnetic Components

7.5.2020
Reading Time: 3 mins read
A A

Healthcare professionals and patients rely on magnetic resonance imaging (MRI) technology to examine soft tissues and organs in the body to detect a variety of issues, from degenerative diseases to tumors, in a non-invasive manner. To do this, the MRI machine uses a strong magnetic field and computer-generated radio waves to produce cross-sectional images. Thus, the quality of the MRI depends on the uniformity of the magnetic field – even the smallest trace of magnetism inside an MRI scanner can disrupt the field and degrade the quality of an MRI image.

How an MRI Works at a High Level

RelatedPosts

Littelfuse Introduces Automotive Current Sensors for EV Battery, Motor, and Safety Systems

Vishay Releases Fast Acting Thin Film Chip Fuses

Mechanical Testing of Tantalum Anodes to Predict Tantalum Capacitor Quality

The MRI machines we are accustomed to today are based on the principle of nuclear magnetic resonance (NMR). More specifically, the molecules that make up the human body contain hydrogen, and the nucleus of the hydrogen atom has a single proton that behaves like a magnet with a north and south pole. When a magnetic field is applied, their spins, which is a property of subatomic particles, arrange uniformly. When a patient is positioned inside the MRI scanner tube, the spins of the protons in the body’s molecules line up, facing the same direction, like a marching band practicing on a football field.

When a short, computer-generated RF signal is applied to a portion of the uniform field, those protons receive a “nudge” and break formation, like a stray football heading for the marching band. After the interruption, the protons return to their state of alignment. In the process of realigning, energy is emitted. That energy can be measured and used to distinguish between different types of molecules and their locations.

However, even the slightest variation in the magnetic field will cause protons to align differently, which means they will not respond the same way to the stimulus. These differences confuse the detection algorithms. In practice, these irregular detections, excessive signal noise, or random variations in signal intensity produce granular images. A low-quality image may lead to a mistaken diagnosis and, consequently, misguided treatment selections.

Component Material Choice is Paramount

Magnetic components inside the MRI scanner tunnel can alter the field’s homogeneity, and even the smallest trace of magnetism could affect the quality of the MRI image. Therefore, it’s important for medical device manufacturers to look for components, including fixed capacitors, trimmer capacitors, inductors, and connectors, that use high-purity metals that exhibit no measurable magnetism.

Compliance with this parameter starts with strict traceability and testing regimens and a foundation of materials science expertise. For example, many capacitors are designed with a nickel barrier finish to maintain solderability; however, nickel’s magnetic properties disqualify the capacitor from being used in imaging applications. Similarly, commercial brass, another commonly used material, is also not acceptable for these applications.

Due to the severe non-magnetism requirements necessary for MRI machines, Knowles Precision Devices applies the following measures:

  • uses only high-purity metals that exhibit no measurable magnetism
  • produce non-magnetic capacitors with silver/palladium (Ag/Pd) terminations
  • offer custom hardware for any necessary non-magnetic adaptations
  • non-magnetic alternatives are lead free while avoiding increased soldering temperatures and leaching problems.
  • strict traceability and testing regimes ensure truly non-magnetic components parameter is met.
  • non-magnetic terminations are offered with select non-magnetic C0G, high Q, and X7R dielectrics to provide a fully non-magnetic component

This amount of care on the component level prevents distortion and minimizes the need for image correction. As a result, clinicians can reliably investigate and diagnose patients without the need for more invasive procedures.

Related

Source: Knowles Precision Devices

Recent Posts

Mechanical Testing of Tantalum Anodes to Predict Tantalum Capacitor Quality

17.12.2025
16

Jianghai Offers Custom Bottom Cooled Screw Aluminum Capacitors

17.12.2025
24

TDK Unveils Vibration-Resistant Hybrid Polymer Aluminum Capacitors

15.12.2025
18

Samsungs Low ESL MLCCs to Power Next-Generation ADAS SoCs

10.12.2025
26

YAGEO Launches Hybrid Polymer Radial Capacitor for High-Reliability Automotive and Power Applications

10.12.2025
29

Digital Twin of a Tantalum Capacitor Anode: From Powder to Formation

8.12.2025
59

November 2025 Interconnect, Passives and Electromechanical Components Market Insights

4.12.2025
94

Skeleton Opens €220M Supercapacitor Leipzig Factory

3.12.2025
26

TAIYO YUDEN Extends Polymer Hybrid Aluminum Capacitors with Higher Ripple Current and Lower Profile

3.12.2025
35

Upcoming Events

Dec 19
12:00 - 14:00 EST

External Visual Inspection per MIL-STD-883 TM 2009

Jan 27
16:00 - 17:00 CET

Simplifying Vehicle Development with Automotive Ethernet and Zonal Smart Switch Technologies

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version