Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Wk 27 Electronics Supply Chain Digest

    VINATech Supercapacitors Enhance Automotive Safety with Reliable E-Latch Emergency Power

    Exxelia Unveils Advanced Components for the Medical Device Industry

    TDK Introduces High Current 80VDC Board-Mount EMI Filters

    Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Sumida Announces New DC Common Mode Choke Coil Series

    KYOCERA AVX Releases New 3dB Hybrid Couplers

    SCHURTER Unveils High Voltage Fuses for EV Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Wk 27 Electronics Supply Chain Digest

    VINATech Supercapacitors Enhance Automotive Safety with Reliable E-Latch Emergency Power

    Exxelia Unveils Advanced Components for the Medical Device Industry

    TDK Introduces High Current 80VDC Board-Mount EMI Filters

    Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Sumida Announces New DC Common Mode Choke Coil Series

    KYOCERA AVX Releases New 3dB Hybrid Couplers

    SCHURTER Unveils High Voltage Fuses for EV Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Modelithics Microwave Supermodels Expands to mmWave Range

29.2.2024
Reading Time: 5 mins read
A A

Modelithics‘ ongoing initiative Modelithics Microwave Supermodels offers increasingly more models validated to higher frequencies (like mmWave range 50 or 67 GHz) for components in which higher-frequency validation makes sense.

There’s no question that mmWave frequencies have received a great deal of attention in recent years. Of course, much of this interest revolves around 5G along with the emerging topic of 6G. As a mmWave application space, 5G has been under the microscope for some time now.

RelatedPosts

Modelithics Releases Components Library v25.0 for Keysight 

Modelithics Announces Release of Keysight COMPLETE Library v25.1

Modelithics Announces COMPLETE+3D Library v25.0 for Ansys HFSS

Of course, the need for mmWave frequencies also extends to other arenas—for instance, mmWave radar is another application that demands performance at these higher frequencies.

Having said all this, one thing is clear: many companies recognize the need to offer products that perform at frequencies higher than ever before. For Modelithics, one ongoing initiative is to offer increasingly more models validated to higher frequencies (like 50 or 67 GHz) for components in which higher-frequency validation makes sense. This initiative not only applies to new models being released but also models originally developed in years past.

Many of these higher-frequency models were introduced in the latest version of the Modelithics COMPLETE Library. These models are also included in the Modelithics mmWave and 5G Library (every model in the mmWave and 5G Library is validated to at least 30 GHz—some as high as 125 GHz). We mentioned how this higher-frequency initiative is relevant even to existing models. Let’s explain that by talking about Modelithics Microwave Supermodels, which were introduced several years back.

One of the first Microwave Supermodels is the model for the Coilcraft 0402CS inductor series. When this model was first introduced as model number IND-CLC-0402-001, it was validated to 10 GHz and covered part values ranging from 1 to 47nH. It also had a substrate-scalability range (i.e., substrate height divided by dielectric constant) of 1 to 8 mils.

Figure 1. Model features of the IND-CLC-0402-201 model.

A second version was later introduced, followed by the currently available Microwave Supermodel (model number IND-CLC-0402-201). This Microwave Supermodel is validated to 20 GHz, covers a part-value range of 1 to 120 nH, and has a substrate scalability range of 1 to 16.4 mils (Fig. 1). It’s clear these numbers represent a pretty big jump compared to the original model.

Now, you’ll notice the IND-CLC-0402-201 Microwave Supermodel is validated to 20 GHz, which may seem like a pretty high frequency. But as mentioned earlier, Modelithics is currently making a push to extend the validated frequency range of certain models well beyond the original frequency range. That’s why you can now find Microwave Supermodels validated to frequencies much higher in comparison to the original models.

You may be wondering how all this is possible. Remember that the models being discussed here are based on actual lab measurements performed at Modelithics. So, these models really begin with the Modelithics lab team, which has extensive experience performing precise measurements of components mounted on printed-circuit-boards (PCBs) at frequencies to 110 GHz and even beyond.

A Microwave Supermodel is spawned when an existing Modelithics model is enhanced to allow for a wider range of performance. These performance enhancements include validations on additional substrates to enable a wider substrate scalability range. Other model enhancements include extending the validated frequency range and extending the part-value range.

Let’s now take a closer look at these higher-frequency Microwave Supermodels. We’ll stick with inductors by examining the model for the Murata LQP02TQ series. When this model was first introduced as model number IND-MUR-01005-003, it had a validated frequency range of DC to 30 GHz. That model was recently replaced with an updated version (model number IND-MUR-01005-103) that’s validated to 67 GHz. Figure 2 shows a schematic that includes this model in a two-port series configuration. The substrate used for this simulation is 4-mil-thick Rogers RO4350B. Figure 3 shows the simulated S11 and S21 for three inductance values. Note that the IND-MUR-01005-103 model covers an inductance range of 0.4 to 22 nH.

Figure 2. Simple schematic that includes the IND-MUR-01005-103 model in a two-port series configuration.
Figure 3. Simulated S11 (left) and S21 (right) of the IND-MUR-01005-103 model in a two-port series configuration. Red: 3.9 nH; Blue: 6.8 nH; Green: 22 nH.

Let’s move beyond inductors and turn our attention to capacitors. In this case, let’s focus on the model for the Kemet CBR02 series (model number CAP-KMT-0201-201). This model is validated to 50 GHz, while the original model (model number CAP-KMT-0201-001) was only validated to 20 GHz. Figure 4 shows the simulated (two-port series configuration) S11 and S21 for three capacitance values. The substrate used this time is 6.6-mil-thick Rogers RO4350B. Note that the CAP-KMT-0201-201 model covers a capacitance range of 0.1 to 39 pF.

Figure 4. Simulated S11 (left) and S21 (right) of the CAP-KMT-0201-201 model in a two-port series configuration. Red: 0.1 pF; Blue: 1.8 pF; Green: 18 pF.

On a final note, expect to see more of these higher-frequency Microwave Supermodels in the future. On top of that, be on the lookout for application notes and other content in the days ahead that demonstrate practical higher-frequency design examples made possible by Microwave Supermodels as well as brand new models validated to higher frequencies.

References

  1. I. Bedford, H. Patel, and L. Levesque, “Application Note 058: Accelerating Designs With Modelithics Microwave
    Supermodels™.”
  2. C. DeMartino, E. O’Dell, and L. Dunleavy, “Application Note 067: Utilizing Substrate Scalability of Modelithics Models in
    Keysight ADS.”
  3. Modelithics literature: https://www.modelithics.com/Literature/AppNote

Related

Source: Modelithics

Recent Posts

VINATech Supercapacitors Enhance Automotive Safety with Reliable E-Latch Emergency Power

7.7.2025
9

Exxelia Unveils Advanced Components for the Medical Device Industry

7.7.2025
23

TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

1.7.2025
21

Sumida Announces New DC Common Mode Choke Coil Series

1.7.2025
14

KYOCERA AVX Releases New 3dB Hybrid Couplers

1.7.2025
14

YAGEO Releases First to Market 750V Aluminum Capacitors

30.6.2025
47

Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

30.6.2025
19

Learn How Supercapacitors Enhance Power System in Knowles eBook

30.6.2025
19

TDK Releases Industry First 1uF 100V X7R MLCCs in 1608 Case

27.6.2025
23

YAGEO Expands One Turn Inductors for AI and High-Efficiency Power Applications

27.6.2025
39

Upcoming Events

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version