Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

    Bourns Releases High Clearance and Creepage 1500VDC Power Transformer

    KYOCERA AVX Expands Stacked MLCC Capacitors Offering

    Murata and QuantumScape Joint Development for Solid Batteries Ceramic Separators

    YAGEO Unveils Compact 3.6kW LLC Transformer for OBC EV Charging

    Over-Voltage Protection Clippers, Clampers, Snubbers, DC Restorers

    KYOCERA Releases Shielded Board-to-Board Connectors for Reliable EMI Protection

    Wk 41 Electronics Supply Chain Digest

    Samtec Expands Connector Severe Environment Testing Offering

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

    Bourns Releases High Clearance and Creepage 1500VDC Power Transformer

    KYOCERA AVX Expands Stacked MLCC Capacitors Offering

    Murata and QuantumScape Joint Development for Solid Batteries Ceramic Separators

    YAGEO Unveils Compact 3.6kW LLC Transformer for OBC EV Charging

    Over-Voltage Protection Clippers, Clampers, Snubbers, DC Restorers

    KYOCERA Releases Shielded Board-to-Board Connectors for Reliable EMI Protection

    Wk 41 Electronics Supply Chain Digest

    Samtec Expands Connector Severe Environment Testing Offering

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Murata Advanced Noise Suppression: Innovative L-Cancel Transformer

14.5.2024
Reading Time: 3 mins read
A A

Murata releases revolutionary LCT L cancel transformer that redefines power supply noise suppression, cutting costs and component count.

Murata unveils a significant advancement in the realm of electronic components with the launch of its innovative L Cancel Transformer (LCT).

RelatedPosts

Murata and QuantumScape Joint Development for Solid Batteries Ceramic Separators

Experimental Evaluation of Wear Failures in SMD Inductors

Resonant Capacitors in High-Power Resonant Circuits

This remarkable product is the first of its kind and can neutralize the equivalent series inductance (ESL) of a capacitor, optimizing its noise-reducing capabilities. Utilizing Murata’s exclusive ceramic multilayer capacitor technology, this breakthrough solution allows engineers to reduce system noise while decreasing costs and component count.

As the demand for miniaturized and highly functional electronics increases, the issue of electromagnetic noise is becoming increasingly prominent for many industries. As a noise countermeasure, capacitors are often utilized between the power supply line and ground, but this method is not without its challenges.

The noise removal effectiveness of the capacitor is optimal when a capacitor’s impedance is lowest. However, capacitor impedance can rise due to its ESL, particularly at frequencies beyond the self-resonant frequency, undermining the efficacy of the noise cancellation. To minimize this impact, it is common practice to connect numerous capacitors in parallel in order to collectively reduce impedance, at the expense of Bill of Material (BoM) component count and costs.

Murata’s LCT is a revolutionary new concept capable of resolving the longstanding challenge of managing power supply noise and capacitor component count. Murata’s LCT component is specifically engineered to minimize noise within the frequency range of a few MHz to 1GHz. It achieves this by utilizing negative mutual inductance to reduce a noise-reducing capacitor’s ESL and therefore increase the effectiveness of its operation, drastically reducing the number of required capacitors.

By using non-magnetic ceramic multilayer technology in its construction, the LCT ensures stable negative inductance and low DC resistance (maximum 55mΩ) even in the presence of current variations and is suitable for a wide range of applications, including consumer, industrial and healthcare products. Murata’s LCT breakthrough is a result of their extensive multilayer ceramic knowledge and redefines power supply noise reduction circuit design, and minimizes a significant and persistent electronic design challenge.

Each LCT is suitable for temperatures up to temperatures 125oC and since there is no DC superposition characteristic, it can be used with stable negative inductance up to 3A. The surface mount device (SMD) measures just 2.0 x 1.25 x 0.95 mm and is available in tape and reel packing.

“Murata’s new LCT is a true innovation that does not merely improve what is available, but redefines what is seen as a standard noise suppression component by radically redefining the entire concept”, said Masamichi Ando, Vice President Business Incubation Center Corporate Technology & Business Development Unit, at Murata. “With this revolutionary component, engineers will be able to reduce component count, system complexity and costs, helping to both further miniaturize their solutions and reduce its impact on the environment by lowering material consumption.”

Murata’s LCT (Part number: LXLC21HN0N9C0L) is entering production with samples available now.

Related

Source: Murata

Recent Posts

High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

15.10.2025
3

Bourns Releases High Clearance and Creepage 1500VDC Power Transformer

15.10.2025
1

KYOCERA AVX Expands Stacked MLCC Capacitors Offering

14.10.2025
11

YAGEO Unveils Compact 3.6kW LLC Transformer for OBC EV Charging

13.10.2025
109

KYOCERA Releases Shielded Board-to-Board Connectors for Reliable EMI Protection

13.10.2025
19

Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

10.10.2025
33

YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

9.10.2025
21

Enhancing Energy Density in Nanocomposite Dielectric Capacitors

9.10.2025
30

Advances in the Environmental Performance of Polymer Capacitors

8.10.2025
62

Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

8.10.2025
14

Upcoming Events

Oct 15
20:00 - 20:30 CEST

Planar Design & Simulation

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version