• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Murata introduces Chip inductor for NFC circuits

25.1.2017

Bourns Releases New Compact Size High Current Ferrite Beads

2.10.2023

Skeleton Demonstrated Supercapacitor Based Shuttle Charging in Seconds

2.10.2023

NICHICON SLB Small Lithium-Titanate Rechargeable Batteries

2.10.2023

Skeleton Unveils the Leipzig Supercapacitor Factory

29.9.2023

Snubber Capacitors in Power Electronics

27.9.2023

TAIYO YUDEN Expands Lineup of Multilayer Metal Power Inductors

26.9.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Bourns Releases New Compact Size High Current Ferrite Beads

    Skeleton Demonstrated Supercapacitor Based Shuttle Charging in Seconds

    NICHICON SLB Small Lithium-Titanate Rechargeable Batteries

    Skeleton Unveils the Leipzig Supercapacitor Factory

    Snubber Capacitors in Power Electronics

    TAIYO YUDEN Expands Lineup of Multilayer Metal Power Inductors

    Bourns Releases New High Energy Gas Discharge Tubes

    Würth Elektronik Extends its Application and Industry Guide for Easy Navigation to Suitable Circuits and Components

    Designing a Small Integrated 500W LLC Transformer

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Charging/Discharging of Linear andNon-linear Capacitors

    How to Select Inductor For Switching Power Supply

    Oscillators Integration, Selection Guide and Design In

    Input Capacitor Selection for Power Supplies – Part 3: Electrolytic Capacitors

    Input Capacitor Selection for Power Supplies Part 2 – Ceramic Capacitors

    Input Capacitor Selection for Power Supplies Video (Part 1)

    Vishay Webinar: Components Selection for Solar Panel Systems

    Capacitors Basics: Decoupling

    Totem Pole PFC Design for E-Mobility; Microchip and WE Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Bourns Releases New Compact Size High Current Ferrite Beads

    Skeleton Demonstrated Supercapacitor Based Shuttle Charging in Seconds

    NICHICON SLB Small Lithium-Titanate Rechargeable Batteries

    Skeleton Unveils the Leipzig Supercapacitor Factory

    Snubber Capacitors in Power Electronics

    TAIYO YUDEN Expands Lineup of Multilayer Metal Power Inductors

    Bourns Releases New High Energy Gas Discharge Tubes

    Würth Elektronik Extends its Application and Industry Guide for Easy Navigation to Suitable Circuits and Components

    Designing a Small Integrated 500W LLC Transformer

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Charging/Discharging of Linear andNon-linear Capacitors

    How to Select Inductor For Switching Power Supply

    Oscillators Integration, Selection Guide and Design In

    Input Capacitor Selection for Power Supplies – Part 3: Electrolytic Capacitors

    Input Capacitor Selection for Power Supplies Part 2 – Ceramic Capacitors

    Input Capacitor Selection for Power Supplies Video (Part 1)

    Vishay Webinar: Components Selection for Solar Panel Systems

    Capacitors Basics: Decoupling

    Totem Pole PFC Design for E-Mobility; Microchip and WE Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Murata introduces Chip inductor for NFC circuits

25.1.2017
Reading Time: 2 mins read
A A
1
VIEWS

source: Murata news

Murata Manufacturing Co., Ltd. has started production of the LQM18JN Series of chip inductors for near field communication (NFC*1) in January.

RelatedPosts

Bourns Releases New Compact Size High Current Ferrite Beads

Skeleton Demonstrated Supercapacitor Based Shuttle Charging in Seconds

NICHICON SLB Small Lithium-Titanate Rechargeable Batteries

In recent years, an increasing number of electronic devices such as smartphones have included NFC capability. An NFC circuit utilizes a chip inductor for impedance matching*2, however, current with large amplitude flows in an NFC matching circuit. With a common matching inductor, the effect of magnetic saturation*3 hinders the expected performance. The LQM18JN Series has been designed specifically for NFC matching circuits and is not easily impacted by magnetic saturation. In addition, its closed magnetic circuit configuration suppresses interference with surrounding components even at high mounting density, making it ideal for reducing the size of the NFC circuit.

Rating

Part Number Inductance
Q
(or higher)
Self-Resonance
Frequency
(MHz or higher)
Rated Current
(mA)
Nominal Value
(nH)
Tolerance
(%)
LQM18JNR10J00 100 ±5% 8 200 650
LQM18JNR12J00 120 ±5% 8 150 610
LQM18JNR16J00 160 ±5% 8 100 550

Features

  • Small size at L:1.6×W:0.8×T:0.55mm (Typ.)
  • With ±5% narrow deviation, ideal for matching.

Applications

  • NFC modules mounted in devices such as smartphones.

Part number

LQM18JNxxxx00 (Enter alphanumeric characters at the “x” locations to indicate the inductance and inductance deviation.)
For details see the product page for LQM18JN.

External size

 

Explanation of Terms
*1. NFC: An acronym for Near Field Communication, in a broader sense it encompasses various standards, but generally it indicates use of the 13.56MHz band at which communication is enabled by touching another NFC compliant device.
*2. Impedance matching: In wireless communication circuits, when components of differing specific impedance for a route in which a signal flows are connected, a reflection of the signal occurs, and this lowers the power of the signal being transferred, and it is therefore linked to a decrease in the sensitivity of the wireless circuit. To counter this, an impedance matching circuit is inserted between components of differing specific impedance so that reflection does not occur, and the related operation is called impedance matching.
*3. Magnetic saturation: When a large current flows with an inductor having a strong magnetic body such as ferrite, a phenomenon is generated wherein the inductance drops. This is called magnetic saturation of the inductor. When magnetic saturation of the inductor is generated in a matching circuit, the inductance falls and therefore the inductance required for matching cannot be maintained, and this lowers the precision of the matching.

Related Posts

Inductors

Bourns Releases New Compact Size High Current Ferrite Beads

2.10.2023
2
Inductors

TAIYO YUDEN Expands Lineup of Multilayer Metal Power Inductors

26.9.2023
63
Capacitors

Würth Elektronik Extends its Application and Industry Guide for Easy Navigation to Suitable Circuits and Components

26.9.2023
41

Upcoming Events

Oct 3
October 3 @ 12:00 - October 5 @ 14:00 EDT

Design and Test of Non-Hermetic Microelectronic

Oct 11
11:00 - 12:00 CEST

Stretchable Electronics

Oct 16
October 16 - October 19

Digital WE Days 2023 – Virtual Conference

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Snubber Capacitors in Power Electronics

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Archive

2023
2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.