• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

New Material to Push the Boundaries of Silicon-Based Electronics

23.1.2019

Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

21.5.2022

Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

19.5.2022

Stackpole Presents High Current Metal Shunt Resistors

19.5.2022

Coilcraft Introduced Ultra-Low Loss Shielded Power Inductors

19.5.2022
  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Stackpole Presents High Current Metal Shunt Resistors

    Coilcraft Introduced Ultra-Low Loss Shielded Power Inductors

    Panasonic Releases SMD Automotive Power Choke Coil

    GAM Introduces Tantalum and Niobium Powders for Cold Spray Applications

    Skeleton Curved Graphene Scientists Named as European Inventor Award 2022 Finalists

    Flexible Cable Supercapacitor Application in EVs and HEVs

    Snubber Capacitor Selection for SiC-Based Switching Converters

    Vishay Releases High Precision Compact Thin Film Wraparound Chip Resistor 

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Stackpole Presents High Current Metal Shunt Resistors

    Coilcraft Introduced Ultra-Low Loss Shielded Power Inductors

    Panasonic Releases SMD Automotive Power Choke Coil

    GAM Introduces Tantalum and Niobium Powders for Cold Spray Applications

    Skeleton Curved Graphene Scientists Named as European Inventor Award 2022 Finalists

    Flexible Cable Supercapacitor Application in EVs and HEVs

    Snubber Capacitor Selection for SiC-Based Switching Converters

    Vishay Releases High Precision Compact Thin Film Wraparound Chip Resistor 

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

New Material to Push the Boundaries of Silicon-Based Electronics

23.1.2019
Reading Time: 3 mins read
0 0
0
SHARES
180
VIEWS

Source: Frauenhofer Institute

The electronics market is growing constantly and so is the demand for increasingly compact and efficient power electronic systems. The predominant electronic components based on silicon will in foreseeable future no longer be able to meet the increasing industrial requirements. This is why scientists from the university of Freiburg, the Sustainability Center Freiburg and the Fraunhofer-Gesellschaft have joined forces in order to explore a new material structure that may be better suited for future power electronics.

RelatedPosts

Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

Stackpole Presents High Current Metal Shunt Resistors

The recently launched project »Research of Functional Semiconductor Structures for Energy Efficient Power Electronics« (in short »Power Electronics 2020+«) researches the novel semiconductor material scandium aluminum nitride (ScAlN). Prof. Dr. Oliver Ambacher, director of Fraunhofer IAF and professor of power electronics at the Department of Sustainable Systems Engineering (INATECH) of the university of Freiburg, coordinates the supra-regional collaboration.

Featured image: A team of researchers at Fraunhofer IAF has been working on the piezoelectric properties of ScAlN for the use in high-frequency filters for many years. The above picture shows the characterization of such devices on a wafer. © Fraunhofer IAF, the image is allowed to use only with this press release.

Three key factors are responsible for the strong growth of the electronics market: the automation and digitalization of the industry as well as the increasing awareness of ecological responsibility and sustainable processes. Power consumption can only be lowered if electronic systems become more more energy- and resource-efficient the same time they become more powerful.

Silicon Technology Reaches its Physical Limit
Up to date, silicon dominates the electronics industry. With its relative low cost and an almost perfect crystal structure, silicon has become a particularly successful semiconductor material, also because its bandgap allows for both a good charge carrier concentration and velocity as well as a good dielectric strength. However, silicon electronics gradually reaches its physical limit. Especially with regard to the required power density and compactness, silicon power electronic components are insufficient.

Innovative Material Composition for More Power and Efficiency
The limitations of silicon technology have already been overcome by the use of gallium nitride (GaN) as a semiconductor in power electronics. GaN performs better in conditions of high voltages, high temperatures and fast switching frequencies compared to silicon. This goes hand in hand with significantly higher energy efficiency—with numerous energy-consuming applications, this means a significant reduction in energy consumption.

Fraunhofer IAF has been researching GaN as a semiconductor material for electronic components and systems for many years. With the help of industrial partners, the results of these research work has already been put to commercial use. The scientists of the project »Power Electronics 2020+« will go even further in order to once more enhance the energy efficiency and durability of the next generation of electronic systems. For this purpose, a different and novel material will be used: scandium aluminum nitride (ScAlN).

First Components Based on ScAlN
ScAlN is a piezoelectric semiconductor material with a high dielectric strength which is largely unexplored worldwide with regard of its usability in microelectronic applications. »The fact that scandium aluminum nitride is especially well suited for power electronic components, due to its physical properties, has already been proven«, explains Dr.-Ing. Michael Mikulla, project manager on the part of Fraunhofer IAF.

The aim of the project is to grow lattice-matched ScAlN on a GaN layer and to use the resulting heterostructures to process transistors with high current carrying capacity. »Functional semiconductor structures based on materials with a large bandgap, such as scandium aluminum nitride and gallium nitride, allow for transistors with very high voltages and currents. These devices reach a higher power density per chip surface as well as higher switching speeds and higher operating temperatures. This is synonymous with lower switching losses, higher energy efficiency and more compact systems«, adds Prof. Dr. Oliver Ambacher, director of Fraunhofer IAF. »By combining both materials, GaN and ScAlN, we want to double the maximal possible output power of our devices while at the same time significantly lowering the energy demand«, says Mikulla.

Pioneering Work in Materials Research
One of the biggest challenges of the project is crystal growth, considering that there exsist structure neither growth recipes nor empirical values for this material, yet. The project team needs to develop these during the next months in order to reach reproducible results and to produce layer structures that can successfully be used for power electronic applications.

Specialist Collaboration and Knowledge Transfer Between Freiburg and Erlangen
The research project will be conducted in close cooperation between the university of Freiburg, the Fraunhofer Institute for Applied Solid State Physics IAF, the Sustainability Center Freiburg as well as the Fraunhofer Institure for Integrated Systems and Device Technology IISB in Erlangen, which is a member of the High-Performance Center for Electronic Systems in Erlangen.

This new form of collaboration between university research and application-oriented development shall serve as a role model for future project cooperation. »On the one hand, this model facilitates the cooperation with companies through the prompt transfer of results from basic research to application-oriented development. On the other hand, it opens up synergies between two technically complementary Fraunhofer Centers from two different regions and thus improves both their offers for potential customers of the semiconductor industry«, reasons Prof. Ambacher.

Related Posts

Capacitors

GAM Introduces Tantalum and Niobium Powders for Cold Spray Applications

19.5.2022
37
New Materials & Supply

Electroninks Enhanced Ultra-Fine Silver Ink Ready for Aerosol Jet Printing

4.5.2022
13
Capacitors

High CV Capacitor Grade Tantalum Powder Enabling High Energy Tantalum Capacitors

11.3.2022
81

Popular Posts

  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About

© 2021 EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© 2021 EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.