Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    ESR of Capacitors, Measurements and Applications

    Murata Christophe Pottier Appointed President of EPCIA

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    YAGEO Unveils Compact 2.4 GHz SMD Antenna

    KYOCERA AVX Releases Antenna for Iridium Satellite IoT Applications

    Molex Releases Industry-First Quad-Row Board-to-Board Connectors with EMI Shields

    Image credit: Samtec

    How to Match the Right Connector with Protocol Requirements

    Smoltek CNF-MIM Capacitors Pass 1,000h Reliability Test

    Capacitor Lead Times: October 2025

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    ESR of Capacitors, Measurements and Applications

    Murata Christophe Pottier Appointed President of EPCIA

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    YAGEO Unveils Compact 2.4 GHz SMD Antenna

    KYOCERA AVX Releases Antenna for Iridium Satellite IoT Applications

    Molex Releases Industry-First Quad-Row Board-to-Board Connectors with EMI Shields

    Image credit: Samtec

    How to Match the Right Connector with Protocol Requirements

    Smoltek CNF-MIM Capacitors Pass 1,000h Reliability Test

    Capacitor Lead Times: October 2025

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Niobium Oxide Advantages over Tantalum as a Capacitor Dielectric

28.6.2022
Reading Time: 3 mins read
A A

Niobium oxide is a sister metal to tantalum, and shares many chemical characteristics with it, in addition to a few advantages of its own when used as a capacitor dielectric.

NATURAL ADVANTAGES NIOBIUM OXIDE HAS OVER TANTALUM AS A CAPACITOR DIELECTRIC

RelatedPosts

ESR of Capacitors, Measurements and Applications

Murata Christophe Pottier Appointed President of EPCIA

3-Phase EMI Filter Design, Simulation, Calculation and Test

Niobium capacitor technology has existed for decades, but its inherent direct current leakage instability and the lack of high purity niobium metal powders combined to arrest the development of this class of capacitors until recently.

Now the development of special doping techniques to improve the DCL performance of niobium oxide capacitors and the scaling up of niobium powder production have resulted in viable commercial production, and manufacturers such as AVX, Vishay or Holy Stone produce several series of surface mount niobium capacitors for commercial, industrial and automotive applications.

ADVANTAGES OF NIOBIUM OXIDE CAPACITORS

Its thin dielectric oxide layer and high dielectric strength combine to produce high volumetric capacitance ratings in similar ratio with tantalum capacitors. It is this affinity with long-established tantalum technology, plus the advantages outlined below, that make niobium oxide devices a growing sector of today’s capacitor marketplace.

  •  Abundance: an important advantage of niobium is the abundance of niobium ore in nature relative to tantalum ore; this relative abundance equates to lower cost and better availability within the capacitor marketplace.
  • Flame Retardant: niobium oxide has a far higher ignition energy than tantalum which results in a significant reduction (up to 95%) of the ignition failure mode of niobium oxide capacitors when compared to conventional tantalum devices.
  • Self-arresting mechanism: In addition to the self-healing known on conventional tantalum MnO2 capacitors, the NbO capacitors are featuring one more feature when it is exposed to local breakdown, the NbO dielectric will transform into a NbO2 semiconductor as a “second” insulation protecting the part to go to short circuit mode. Such part then continue normal operation.
  • High Reliability: the natural high reliability performance of niobium oxide capacitors makes them suitable for high performance industrial and automotive applications such as airbag controls, in-cabin entertainment systems, and seat position modules
  • Light Weight: Niobium oxide powder is half the density of tantalum powder which makes niobium capacitors a practical choice for portable and wearable electronic devices
  • Deating rule: 20% derating is sufficient compare to 50% typical derating recommended for conventional tantalum MnO2 capacitors in power, high surge applications.
  • Niobium oxide capacitors are produced using the same moulded case styles and industry standard footprints as conventional surface mount tantalum capacitors, in capacitance ratings up to 1,000µF and voltage ratings from 1.8Vdc to 10Vdc

LIMITATIONS

  • The main limitation is the maximum rated voltage – 10V, with recommended derating 20% it means the technology is suitable for operating voltages up to 8V maximum.
  • ESR is in line with conventional tantalum MnO2 capacitors that is higher compare to tantalum polymer types offering lower ESR capability
  • Product range does not offer low profile, high CV variants.
  • Maximum 125C parts with higher temperature derating above 85C.

Conclusion

Niobium Oxide capacitors are viable alternative to circuits with operating voltages up to 8V. If you do not need highest energy density in extreme low profile, the NbO capacitors may bring you the benefit in reliable and safe long term operation.

Refer further to tantalum capacitors knowledge base article: https://passive-components.eu/tantalums-capacitors/

Related

Recent Posts

ESR of Capacitors, Measurements and Applications

7.11.2025
3

3-Phase EMI Filter Design, Simulation, Calculation and Test

6.11.2025
19

Molex Releases Industry-First Quad-Row Board-to-Board Connectors with EMI Shields

6.11.2025
6

Smoltek CNF-MIM Capacitors Pass 1,000h Reliability Test

6.11.2025
9

Capacitor Lead Times: October 2025

6.11.2025
42

Paumanok Unveils Aluminum Capacitor Foils World Markets Study 2025-2030

6.11.2025
10

Coilcraft Introduces Ultra-Low Loss Shielded Power Inductors

6.11.2025
8

Würth Elektronik Expands its MagI³C-VDMM MicroModules

5.11.2025
8

Littelfuse Releases Load-Powered Compact Relay

5.11.2025
12

Murata Expands High Cutoff Frequency Chip Common Mode Chokes

5.11.2025
9

Upcoming Events

Nov 11
17:00 - 18:00 CET

Industrial Applications Demand More from Interconnects in Next-Gen Designs

Nov 12
11:00 - 12:00 CET

PCB Design: Impedance is for everyone!

Nov 12
November 12 @ 12:00 - November 13 @ 14:15 EST

Microelectronic Packaging Failure Modes and Analysis

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version