Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Combines Varistor and Gas Discharge Tube into One Component

    Vishay Extends Automotive TO-220 Thick Film Power Resistors with 30W Option

    Transient Suppression Guide

    Rubycon Releases High Capacitance Radial Lead Aluminum Electrolytic Capacitors

    October 2025 ECIA US Components Sales Sentiment Remains Strong but Weakens in November

    Wk 46 Electronics Supply Chain Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Combines Varistor and Gas Discharge Tube into One Component

    Vishay Extends Automotive TO-220 Thick Film Power Resistors with 30W Option

    Transient Suppression Guide

    Rubycon Releases High Capacitance Radial Lead Aluminum Electrolytic Capacitors

    October 2025 ECIA US Components Sales Sentiment Remains Strong but Weakens in November

    Wk 46 Electronics Supply Chain Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Panasonic Develops Glass Composite Circuit Board Material that Improves Parts Mounting Reliability

4.6.2018
Reading Time: 5 mins read
A A

Source: Panasonic news

Panasonic’s new glass composite circuit board material improves the mounting reliability of electronic circuit board parts, thereby contributing to the long-term stable operation of automotive and industrial equipment.

RelatedPosts

TDK Combines Varistor and Gas Discharge Tube into One Component

Vishay Extends Automotive TO-220 Thick Film Power Resistors with 30W Option

Transient Suppression Guide

Osaka, Japan – Panasonic Corporation announced today that it has developed a glass composite circuit board material (product number: R-1785) suited for automotive and industrial equipment. Mass production is scheduled to start in June 2018.

With the ever-increasing use of electronics in vehicles and recent trend toward high functionality of various industrial equipment, electronic circuit boards now require excellent parts mountability and compatibility with high currents. Panasonic has developed a glass composite circuit board material (CEM-3 grade) that achieves the industry’s lowest*1 coefficient of thermal expansion (CTE) [1] by using its unique manufacturing method and resin design technology, thereby contributing to the improvement of parts mounting reliability and compatibility with high currents for electronic circuit boards.

Panasonic’s new glass composite circuit board material has the following features:

  • The industry’s lowest*1 coefficient of thermal expansion that improves the parts mounting reliability of electronic circuit boards
  • Coefficient of thermal expansion 15 – 17 ppm/°C (α1) (Board thickness: 0.8 mm)
  • Panasonic’s conventional product*2: 20 – 23 ppm/°C (α1) (Board thickness: 0.8mm)
  • Excellent tracking resistance [2] compatible with the miniaturization of high-current circuit boards
  • Comparative tracking index (CTI) ≥ 600 V
  • Panasonic’s conventional product*3: 250 V > CTI ≥ 175 V
  • Highly accurate board thickness that contributes to the stable operation of electronic circuit boards
  • Board thickness accuracy: ±0.05 mm (Board thickness: 1.6 mm)
  • Panasonic’s conventional product*3: ±0.10 mm (Board thickness: 1.6 mm)
    (Twice the accuracy)

Notes:
*1: As a glass composite circuit board material (CEM-3 grade) as of June 4, 2018 (Panasonic data)
*2: Panasonic’s conventional product (General glass composite circuit board material, Panasonic product number: R-1786)
*3: Panasonic’s conventional product (General glass epoxy circuit board material, Panasonic product number: R-1705)

Suitable applications:
Automotive equipment (Instrument panels), power supply/power device module circuit boards, infrastructure equipment (Smart meters, antenna communication equipment), appliances (Air-conditioners, power conditioners), etc.

Notes:
This new product will be exhibited at JPCA Show 2018, which will be held at Tokyo Big Sight from June 6 to 8, 2018.

Product Features

The industry’s lowest coefficient of thermal expansion that improves the parts mounting reliability of electronic circuit boards

Lead-free solder, which has been more commonly adopted for parts mounting in recent years, requires circuit board materials with high mounting reliability because its bonding strength is lower than that of conventional lead-containing solder. Although glass composite circuit board materials are superior to the current mainstream glass epoxy circuit board materials in terms of processability and cost performance, they have issues with mounting reliability due to their high thermal expansion.

This new product has achieved the industry’s lowest CTE as a glass composite circuit board material thanks to Panasonic’s unique resin design technology. It has high parts mounting reliability and contributes to improving the reliability of electronic circuit boards during long-term use.

Excellent tracking resistance compatible with the miniaturization of large current circuit boards
With the increasingly more compact and lightweight power supply circuit boards due to the recent trend toward high functionality of various equipment, electronic circuit board wiring is becoming increasingly more narrow-pitch, requiring the improvement of insulation properties between circuits.

The current mainstream glass epoxy circuit board materials have issues with improving tracking resistance, which is an indicator of intercircuit insulation properties. This new product has achieved the industry’s highest tracking resistance grade, PLC = 0 (600 V or higher), thanks to Panasonic’s unique resin design technology, thereby achieving high intercircuit insulation properties. The product enables the design of ever more finely wired electronic circuit boards, thereby contributing to compatibility with high currents and the miniaturization of circuit boards.

Highly accurate board thickness that contributes to the stable operation of electronic circuit boards
Impedance, which is an important characteristic of electronic circuit board designs, varies in accordance with the thickness of insulation layers. The accuracy of impedance [3] improves with higher accuracy of board thickness, which indicates the thickness of insulation layers.

This new product has achieved a board thickness accuracy of ±0.05 mm, which is superior to that of general glass epoxy circuit board materials, thanks to Panasonic’s unique lamination process. The material enables the stable operation of electronic circuit boards, thereby contributing to the improvement of yields during circuit board manufacturing processes.

General properties

Item Test method Condition Unit R-1785 Our conventional
CEM-3
Our conventional
FR-4
Glass transition temp. (Tg) TMA Temp. rising rate: 10°C/min °C 150 140 140
Solder heat resistance JIS C 6481 A
260°C solder float for 2min
– No abnormality No abnormality No abnormality
CTE x-axis α1 IPC-TM-650 2.4.41 TMA ppm/°C 19 (15) 25 (20) 13
CTE y-axis 21 (17) 28 (23) 15
CTE z-axis α1 IPC-TM-650 2.4.24 TMA ppm/°C 50 65 65
Dielectric constant (Dk) 1MHz IPC-TM-650 2.2.2.9 C-96/20/65 – 4.5 4.5 4.8
Dissipation factor (Df) 0.019 0.015 0.015
Insulation resistance JIS C 6481 C-96/20/65 MΩ 5×108 5×108 1×108
Tracking resistance IEC 60112 A V CTI≥600 CTI≥600 250>CTI≥175
Accuracy of thickness
(σ value)
– A mm 0.013 0.013 0.027
The sample thickness is 1.6mm.
The figure in parentheses is for the thickness of 0.8mm.
The above data is actual values and not guaranteed values.
Term Descriptions
[1] Coefficient of thermal expansion (CTE)
The CTE is a ratio that describes the increase in length, at constant pressure, of a material per unit temperature during a temperature change.
[2] Tracking resistance
Tracking refers to the phenomenon by which short circuits occur between wires due to discharge when a high current or a high voltage is applied to electronic circuit boards with moist or dirty surfaces. Tracking resistance indicates the capability of circuit board materials to resist this tracking.
[3] Impedance
Impedance refers to the resistance value of a conductor with respect to a passing current when an AC voltage is applied to an electronic circuit. It is expressed using an electric network consisting of a combination of a DC resistance, capacitance, and inductance. Impedance is measured in Ohms (Ω).

Related

Recent Posts

TDK Combines Varistor and Gas Discharge Tube into One Component

21.11.2025
1

Vishay Extends Automotive TO-220 Thick Film Power Resistors with 30W Option

19.11.2025
8

Rubycon Releases High Capacitance Radial Lead Aluminum Electrolytic Capacitors

18.11.2025
22

Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

12.11.2025
8

Murata Expands High Rel NTC Thermistors in Compact 0603M Size

12.11.2025
10

Molex Releases Industry-First Quad-Row Board-to-Board Connectors with EMI Shields

6.11.2025
27

Capacitor Lead Times: October 2025

6.11.2025
142

Coilcraft Introduces Ultra-Low Loss Shielded Power Inductors

6.11.2025
31

Würth Elektronik Expands its MagI³C-VDMM MicroModules

5.11.2025
23

Upcoming Events

Dec 2
December 2 @ 12:00 - December 4 @ 14:15 CET

Microwave Packaging Technology

Dec 9
December 9 @ 12:00 - December 11 @ 14:15 EST

Space and Military Standards for Hybrids and RF Microwave Modules

Dec 10
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version