• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Pedal effect circuit design using “magical inductor”: getting started

24.8.2022

Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

21.3.2023

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

20.3.2023

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

20.3.2023

Flying Capacitors Explained

17.3.2023

TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

16.3.2023

ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

16.3.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    TDK Extends Range of Industrial Single Pair Ethernet (SPE) Inductors

    Premo Unveils New series of 11kW 3-Phase On-Board Charger Transformers

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    TDK Extends Range of Industrial Single Pair Ethernet (SPE) Inductors

    Premo Unveils New series of 11kW 3-Phase On-Board Charger Transformers

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Pedal effect circuit design using “magical inductor”: getting started

24.8.2022
Reading Time: 7 mins read
0 0
0
SHARES
1.5k
VIEWS

RelatedPosts

Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

source: EDN article
Mark Stansberry -July 30, 2017
If you want to replicate the music of your favorite musicians, you will need to know the pedal effect devices they use and the circuitry within them. Furthermore, if you want to design new pedal effects that please your audience, you will need the right tools, the right design flows, the right components, some circuit know-how, and a little creativity.

The design of pedal effect circuits, i.e. circuits that modify the waveforms of musical instruments, is an art and science that has been practiced since the 1920s. Fundamental to the reproduction of era-specific and musician-specific music is the technology contained in these pedal effect gadgets. Different artists prefer different component technology: tubes, germanium transistors, silicon bipolar transistors, MOSFETs, diodes, JFETS, op amps or any mix thereof.

The passive components used in pedal effect circuits, like inductors, capacitors and resistors, complicate the process of analog sound reproduction. Of specific mystical interest to many professional musicians is the “magical inductor.” Thought to be enchanted music’s key, the magical inductor, once placed inside a circuit generates harmonics that separate it apart from all other inductors. The idea of a magical inductor keeps musicians wondering. Is music’s holy grail locked inside the pedal device of a long-ago musician? Is the magical inductor made of a special material? Is the magical inductor lost in time and do the music giants of our times have access to it? One thing most of them agree on is that the magical inductor is one of the analog Muses and not one of the digital Sirens.

 Audio circuit simulation and emulation

Audio engineers and musicians use a variety of tools to help them create analog pedal effect circuits. Among those are Digital Audio Workstations (DAW) and analog circuit simulators such as LTspice. Using these two tools together, designers can electrically analyze and listen to different wave modification circuits without building the circuitry.

These two tools give the audio designer different design flow options. Instead of design, simulate, build, and test, the designer has the exploratory option of design, simulate and emulate. After the pedal effect circuit schematic is entered into the LTspice circuit simulator and after it is simulated for basic electrical performance characteristics, such as bias, gain, noise, harmonics and frequency response, it is run through an audio emulator (which could be an expensive DAW software package or a free multimedia player). For an audio emulation, a music file such as a WAV or MIDI file is fed into the LTspice circuit simulator. The audio output file from LTspice is then played with a DAW or multimedia player and listened to on a pair of high-quality headphones.

Although this is an efficient way to listen to the circuit performance without building the circuit, the audio emulation will not necessarily produce an exact replica of the analog circuit. You could very well lose analog subtleties and associated music intonations that the actual analog circuit produces.

When the designer uses his or her ear, and musical and circuit analysis experience, the designer can mentally interpolate how the audio emulation will actually sound when it comes out of an analog circuit. To a large extent, audio mental interpolation takes experience to do well. To gain this experience, once a pedal LTspice circuit’s harmonics are examined and listened to on a DAW or media player, the designer should build and listen to the actual hardware prototype with, for example, a guitar as its input. Developing audio mental interpolation skills also requires that the actual hardware prototype waveforms on the oscilloscope be compared with the DAW’s output and the sound you hear. In this way, the designer can determine what is lost in the LTspice/DAW audio emulation harmonic analysis (Fast Fourier Transform).

Pedal effect design

There are literally thousands of different pedal devices and variants on the market. Some of the most popular effects include distortion, fuzz, overdrive, the Wah, delay, flanger, boost, phaser and tremolo. There are also hundreds of different ways to create a pedal circuit. Musicians often favor pedal effect circuits created with specific types of components or with a specific circuit design; that’s because the subtleness of the sound will often depend on the specific circuit design and the types of components used.

A distortion pedal effect circuit is relatively simple to build. A basic one-transistor amplifier can be used. However, unlike the design of an amplifier, where the goal is to produce an exact duplicate of the input waveform with little or no distortion, the design goal of the pedal distortion circuit is to add just the right amount of distortion. There are several ways to do this. The most common is to alter the bias point of the amplifier. In the JFET amplifier design below, the bias resistors, and the source and drain resistors can be varied to introduce different levels of distortion. Another common way is to overdrive the amplifier. One more way is to modulate the voltage supply.

In the circuit that follows, a common source amplifier configuration was used. It was designed to introduce as little distortion as possible. Specifically, a bias point and a low enough input voltage level was used to avoid clipping. The JFET was selected because it, of all discrete transistor devices, mimics the operation of the now-ancient vacuum tube.

 

   
Figure 1 A common source drain amplifier, based on the LSK489 JFET, is one basis for a distortion pedal circuit.

To capture the audio with LTspice, as shown in Figure 1, a wave statement was used as a SPICE directive:

.wave “Preamplifier_Common_Source_JFET_LSK489” 16 16000 V(Out1)

The statement specifies the audio output wave file that the audio output is to be stored in, Preamplifier_Common_Source_JFET_LSK489.wav. The command also specifies 16-bit resolution sampling, 16,000 samples per second sampling rate and the node to be recorded, Out1 (the output node of the amplifier). LTspice allows for sampling rates up to 4 billion samples per second (1), way more than you will need for high quality audio and video recording!

With a 300 Hertz, 0.5Vpp input signal, the common source amplifier outputs a 300 Hz signal (4.5 Vpp) that is 180 degrees out of phase with the input (Figure 2). If you do not want the phase shift, you would have to include another common source amplifier (the LSK489 contains two JFETs per package) to introduce another 180-degree phase shift or use a common drain or gate configuration.

Figure 2 The output (Out1) of the JFET amplifier shows little distortion.

To introduce some overdrive distortion, the input signal is increased to 3 volts peak-to-peak. The resultant output waveform is given below. As can be seen, it is asymmetrically clipped at the top (2).

Figure 3 Applying a 3 Volt peak-to-peak input signal to the JFET amplifier results in significant output distortion. In this case, the top of the output waveform is clipped and the baseline voltage is around 3 Volts.  
LTspice’s Fast Fourier Transform (FFT) simulation feature gives the designer a way to determine the magnitude of the harmonics generated from a circuit. This allows the designer to get an idea of the sound effect generated before hardware prototyping. Below (Figure 4), the Fast Fourier Transform of the 300 Hz output waveform is illustrated. The FFT indicates that the 1st harmonic is around 3 dB. The Fast Fourier Transform also indicates that the harmonics generated at 600 Hz and 900 Hz are significant (in the 0 dB to 7 dB range). The intermodulation distortion, (harmonics that are not a multiple of the 1st Harmonic, 300 Hz) are also present. But for the most part they are below 80 dB and are not audible. Low intermodulation distortion can be attributed to the LSK489’s very low effective input capacitance.

When the distorted and non-distorted waveforms are listened to and compared on Microsoft’s Media Player you can discern the difference. The clipping reduces the bass and increases the pitch (attributed to the higher level of the 2nd and 3rd harmonics).

Figure 4 Overdriving the JFET amplifier generates 2nd and 3rd harmonics that compete with the 1st harmonic.
Listening to the simulation’s output

The audio files, preamplfier_common_source_jfet_lsk489.wav and hard_clipping_jfet_lsk489_15volt.wav, are the audio from the output waveforms in Figures 2 and 3. They can be listened to on a DAW or if you’re on a budget, on your Windows Media Player, which comes preinstalled on almost all PCs.

With the LTspice schematic (Figure 1), it is easy to hear how component changes will affect the audio output. Simply change a component, rerun the simulation, and then listen to the new wav file.  You can also easily hear how different sampling rates will affect the audio quality.  For example, if you want studio recording quality, changing the sampling rate parameter of the wave. statement from 16000 to 192000 samples per second (sps) will do the job. But you don’t have to stop there. If you want to hear how your own music will sound, you can reconfigure the input source in the LTspice schematic so that it will input your own wav file recordings.

 Emulation advantages and precautions

Audio simulation and emulation with LTspice and a simple digital audio system, such as Windows Multimedia Players, gives pedal designers a tremendous design advantage. Analog emulation eliminates the expense and time associated with hardware prototyping. Analog emulation also opens the door to automated design flows. SPICE scripts can be written that cycle through component values, analyze output and report on favorable harmonic outputs. Analog emulation also facilitates an intuitive design approach that can override the time-consuming process of analog circuit analysis.

Caution, however, must be exercised. Digital emulation of audio signals may lose subtle harmonics. However, this loss can be overcome if ultra-high digital sampling rates are used. LTspice offers ultra-high sampling rates (Gsps), but for the real world a 192 Ksps with a 24-bit resolution, studio quality, will do. Other considerations are the quality of the amplifiers in an audio workstation and the headphones used. The sound circuit in the audio workstation should be able to play 192 Ksps music.

Care must also be exercised in the circuit design. Analog circuit simulators often don’t report violations of basic circuit design rules that can cause a circuit to fail. For example, the gate-to-source voltage of a N-channel JFET should always be less than zero. Large positive excursions above 0 V result in forward biasing the gate-to-source diode junction. An excessive forward bias voltage will eventually result in an inoperable JFET. Most analog circuit simulators do not report a design error if you exceed the maximum drain-to-source voltage.

 References

  • Processing Audio with Octave and LTspice, Author; Dr. Tony Richardson, Affiliation: University of Evansville.
  • A Musical Distortion Primer, Author: R.G. Keens, Publisher: Geo-Fex Cybernetic Music, Publication Date: 1993.
  • The LSK489 Data Sheet: Low Noise Low Capacitance Monolithic Dual N-Channel JFET Amplifier, Publisher: Linear Integrated Systems.
  • Using WAVE files as input/output in LTspice
  • LTspice Tutorial -how to use this program.
  • Why are JFET based petals better than op amp based petals, Publication Date: April, 2013, Publisher: Tdpri.com
  • Field Effect Transistors in Theory and Practice, Application Note AN211, Publisher: Motorola, Publication Date: 1993
  • FETs versus Tubes: Exploding the Myths, Publisher: Diystompboxes.com, Publication Date: October 2010

    Mark Stansberry participates in the technology and education industry as a writer, publisher, engineer, educator, and technical research and market analyst.

Related Posts

Capacitors

Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

21.3.2023
66
Market & Supply Chain

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

20.3.2023
19
Capacitors

Flying Capacitors Explained

17.3.2023
42

Upcoming Events

Mar 19
March 19 - March 23

APEC 2023

Apr 3
April 3 @ 12:00 - April 4 @ 14:00 CEST

Microelectronic Packaging Failure Modes and Analysis

Apr 5
11:00 - 12:00 CEST

Plugging – Filling – Tenting; WE PCB Webinar

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.