Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Inductor Resonances and its Impact to EMI

    Developing Low Inductance Film Capacitor using Bode 100 Analyzer

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Würth Elektronik Releases High Performance TLVR Coupled Inductors

    YAGEO Extends Rectangular Aluminum Electrolytic Capacitor Family

    Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

    Littelfuse Releases Industry-First SMD Fuse with 1500A Interrupting Rating at 277V

    TDK Unveils Industry Highest Rated Current Multilayer Chip Beads

    Vishay Releases Automotive SMD Thick Film Power Resistor for Enhanced Protection Against Short Transient Pulses

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Inductor Resonances and its Impact to EMI

    Developing Low Inductance Film Capacitor using Bode 100 Analyzer

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Würth Elektronik Releases High Performance TLVR Coupled Inductors

    YAGEO Extends Rectangular Aluminum Electrolytic Capacitor Family

    Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

    Littelfuse Releases Industry-First SMD Fuse with 1500A Interrupting Rating at 277V

    TDK Unveils Industry Highest Rated Current Multilayer Chip Beads

    Vishay Releases Automotive SMD Thick Film Power Resistor for Enhanced Protection Against Short Transient Pulses

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Properties and Characteristics of Crystal Units

24.5.2023
Reading Time: 5 mins read
A A

This article written by Wataru Muraoka, KYOCERA-AVX Corporation explains properties and characteristics of crystal units.

Numerous devices in people‘s lives today are becoming more sophisticated. As a result, the number of crystal devices installed is increasing.

RelatedPosts

KYOCERA AVX Releases Compact High-Directivity Couplers

Kyocera Introducing SAW Filters for Implantable Medical and AED Applications

The Path to Thinner MLCCs and Innovative Capacitor Development

For example, with the evolution of autonomous driving, we are using crystal devices for many functions such as sensor systems to detect distance, camera systems to capture images, image processing systems to process captured images, and communication systems to communicate many of those digital data in and out of the vehicle at high speed.

Crystal Units are a piezoelectric element which produces electricity on the surface when mechanical pressure is applied, and when electricity is applied it vibrates in a certain manner. A Crystal Unit is a product that utilizes this piezoelectric effect.

In addition, in the network market, the number of crystal devices is increasing along with the further increase in the speed of communication devices, as
well as the increase in the frequency and precision. This paper describes KYOCERA AVX’s technology for Crystal Units, one of its crystal device products.

What are Crystal Units?

Crystal Unit is a piezoelectric element which produces electricity on the surface when mechanical pressure is applied, and when electricity is applied
it vibrates in a certain manner. A Crystal Unit is a product that utilizes this piezoelectric effect.

Figure 1. shows the overall image, and Figure 2 shows the vibration mode.

Figure 1: Crystal Unit Image; Source KYOCERA AVX
Figure 2: Crystal Unit Vibration Image; Source: KYOCERA AVX

Frequency is dependent on Crystal thickness, the thinner it gets the higher the frequency. Our technology development is targeted for thinner and smaller products. Due to our own unique technology which are CVM technology and photolithography, we have realized the world’s smallest Crystal Unit in 1008 size shown in Figure 3.

Figure 3: World’s smallest Crystal Unit CX1008SB series; source: KYOCERA AVX

From here we will explain regarding increased reliability in the junction.

Figure 4: Crack for conventional crystal unit product; source: KYOCERA AVX

Due to the difference ceramic package and customer’s board, when the component is mounted on a board residual stress remains in the junction, which may lead to solder cracks as shown in Figure 4.

In order to improve the above, the pitch between the terminations have been shortened and termination area has been enlarged as shown in Figure 5.

Ceramic package and the glass epoxy board are electrically connected with solder. The improved junction reliability is one of the main features of this product.

Figure 5: No solder crack confirmed regarding improved product series; source: KYOCERA AVX

Miniaturization of Crystal Units

In recent years, the mounting density of electronic devices has increased due to the increasing number of functions of communication terminals for 5G communications, faster Wi-Fi®, and the electrification of onboard components.

In addition, due to the limited space available in the mounting area, the size of mounted components is becoming smaller. Among them, Kyocera developed excellent photolithography and ultra-high precision machining technology jointly with Osaka University, and we have succeeded in mass producing an ultra-small crystal unit, the CX1008SB Series.

If the size is reduced from the conventional size of 1.2 x 1.0mm to 1.0 x 0.8mm, the series resistance value (CI value) will increase by about 30%. To avoid
this, it was necessary to review the circuit design of the substrate on which the crystal is mounted.

Therefore, by optimizing the design of the crystal device using Kyocera’s proprietary piezoelectric analysis technology, Kyocera achieved a size as small as 1.0 x 0.8mm while also achieving electrical characteristics equivalent to 1.2 x 1.0 mm (Kyocera’s CX1210 Series). This made it possible to use the circuit on the board without making changes.

Plasma CVM Machining

With conventional machining accuracy, when a crystal device is miniaturized there is a problem that variations in electrical characteristics become large. Kyocera has resolved this problem with its ultra-high precision machining technology which Kyocera developed in collaboration with Osaka University.

This technology is a processing method that uses neutral radicals in plasma and chemical reactions on the surface of the workpiece, enabling precise control of crystal thickness and surface conditions. This has resulted in a successful reduction in frequency fluctuation.

Plasma is radiated to crystal wafers in atmospheric pressure, triggering a chemical reaction with neutral radicals to realize equal wafer thickness.

Related

Source: KYOCERA AVX

Recent Posts

Würth Elektronik Releases High Performance TLVR Coupled Inductors

15.5.2025
15

Murata Releases 008004 High-Frequency SMD Chip Inductor

12.5.2025
21

KYOCERA AVX Releases Compact High-Directivity Couplers

7.5.2025
24

Würth Elektronik Offers New Power Supplies Development Kit

29.4.2025
44

Minimization of Crystal Oscillator Cosmic Radiation Effects

28.4.2025
18

Würth Elektronik Releases Compact Power Molded Flat-Wire Inductors

23.4.2025
40

Kyocera Introducing SAW Filters for Implantable Medical and AED Applications

15.4.2025
29

The Path to Thinner MLCCs and Innovative Capacitor Development

2.4.2025
184

Würth Elektronik Expands Snap Ferrite Families

25.3.2025
37

Murata Expands SMD NTC Thermistors with Compact Sizes and High-precision Temperature Sensing 

19.3.2025
48

Upcoming Events

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Inductor Resonances and its Impact to EMI

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • DC-DC Converter Basic Characteristics and Formulas

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version