• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Properties and Characteristics of Crystal Units

24.5.2023

Toray to Boost Polypropylene Film Production to Meet Rising Automotive Capacitor Demand

8.6.2023

Yageo Expects Passive Components Inventory Correction for at Least Two Next Quarters

8.6.2023

May 2023 ECIA NA Electronic Components Sales Sentiment below April Expectation

7.6.2023

Paumanok Issues Passive Components in Oil and Gas Electronics Market Outlook 2023-2028

5.6.2023

Researchers Study Aluminum Dissolution to Increase Supercapacitor Voltages, Suggest New Way of Al Thin Film Deposition

5.6.2023

Frenetic Offers Frenetic Zero One Month Free Magnetic Design Tool

5.6.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Toray to Boost Polypropylene Film Production to Meet Rising Automotive Capacitor Demand

    Yageo Expects Passive Components Inventory Correction for at Least Two Next Quarters

    May 2023 ECIA NA Electronic Components Sales Sentiment below April Expectation

    Paumanok Issues Passive Components in Oil and Gas Electronics Market Outlook 2023-2028

    Researchers Study Aluminum Dissolution to Increase Supercapacitor Voltages, Suggest New Way of Al Thin Film Deposition

    Frenetic Offers Frenetic Zero One Month Free Magnetic Design Tool

    Murata Releases 150C Automotive Crystals

    KAMIC Group Acquires Wound Components Specialist AGW Electronics

    4th PCNS Registration Opens !

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Exploring Frenetic and Maxwell Options for an Optimal Transformer Performance in LLC Circuit

    Fast 25kW SiC EV Charger Design; OnSemi and Würth Elektronik Webinar

    PFC Inductor Magnetic Design Considerations; Frenetic Webinar

    Introduction to Capacitor Technologies; WE Webinar

    Self-Adjusting and Economical Switched Capacitor Balancer for Serially Connected Storage-Cells

    How to Design EMC Efficient Power Converter; WE Webinar

    Selecting Capacitors for High Power Buck-Booster Converters

    How to use Off-the-Shelf Transformers in Switching Power Supplies

    Simple Capacitors Pre-Charger Based on Unique ‘Floating Integrator’

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Toray to Boost Polypropylene Film Production to Meet Rising Automotive Capacitor Demand

    Yageo Expects Passive Components Inventory Correction for at Least Two Next Quarters

    May 2023 ECIA NA Electronic Components Sales Sentiment below April Expectation

    Paumanok Issues Passive Components in Oil and Gas Electronics Market Outlook 2023-2028

    Researchers Study Aluminum Dissolution to Increase Supercapacitor Voltages, Suggest New Way of Al Thin Film Deposition

    Frenetic Offers Frenetic Zero One Month Free Magnetic Design Tool

    Murata Releases 150C Automotive Crystals

    KAMIC Group Acquires Wound Components Specialist AGW Electronics

    4th PCNS Registration Opens !

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Exploring Frenetic and Maxwell Options for an Optimal Transformer Performance in LLC Circuit

    Fast 25kW SiC EV Charger Design; OnSemi and Würth Elektronik Webinar

    PFC Inductor Magnetic Design Considerations; Frenetic Webinar

    Introduction to Capacitor Technologies; WE Webinar

    Self-Adjusting and Economical Switched Capacitor Balancer for Serially Connected Storage-Cells

    How to Design EMC Efficient Power Converter; WE Webinar

    Selecting Capacitors for High Power Buck-Booster Converters

    How to use Off-the-Shelf Transformers in Switching Power Supplies

    Simple Capacitors Pre-Charger Based on Unique ‘Floating Integrator’

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Properties and Characteristics of Crystal Units

24.5.2023
Reading Time: 5 mins read
A A
31
VIEWS

This article written by Wataru Muraoka, KYOCERA-AVX Corporation explains properties and characteristics of crystal units.

Numerous devices in people‘s lives today are becoming more sophisticated. As a result, the number of crystal devices installed is increasing.

RelatedPosts

KYOCERA AVX Antenna Simulation Models are now Available in Ansys Simulation Software

The Benefits of Using Tantalum Capacitors in Electric Vehicle Applications

DC Bias Characteristics of Ceramic Capacitors

For example, with the evolution of autonomous driving, we are using crystal devices for many functions such as sensor systems to detect distance, camera systems to capture images, image processing systems to process captured images, and communication systems to communicate many of those digital data in and out of the vehicle at high speed.

Crystal Units are a piezoelectric element which produces electricity on the surface when mechanical pressure is applied, and when electricity is applied it vibrates in a certain manner. A Crystal Unit is a product that utilizes this piezoelectric effect.

In addition, in the network market, the number of crystal devices is increasing along with the further increase in the speed of communication devices, as
well as the increase in the frequency and precision. This paper describes KYOCERA AVX’s technology for Crystal Units, one of its crystal device products.

What are Crystal Units?

Crystal Unit is a piezoelectric element which produces electricity on the surface when mechanical pressure is applied, and when electricity is applied
it vibrates in a certain manner. A Crystal Unit is a product that utilizes this piezoelectric effect.

Figure 1. shows the overall image, and Figure 2 shows the vibration mode.

Figure 1: Crystal Unit Image; Source KYOCERA AVX
Figure 2: Crystal Unit Vibration Image; Source: KYOCERA AVX

Frequency is dependent on Crystal thickness, the thinner it gets the higher the frequency. Our technology development is targeted for thinner and smaller products. Due to our own unique technology which are CVM technology and photolithography, we have realized the world’s smallest Crystal Unit in 1008 size shown in Figure 3.

Figure 3: World’s smallest Crystal Unit CX1008SB series; source: KYOCERA AVX

From here we will explain regarding increased reliability in the junction.

Figure 4: Crack for conventional crystal unit product; source: KYOCERA AVX

Due to the difference ceramic package and customer’s board, when the component is mounted on a board residual stress remains in the junction, which may lead to solder cracks as shown in Figure 4.

In order to improve the above, the pitch between the terminations have been shortened and termination area has been enlarged as shown in Figure 5.

Ceramic package and the glass epoxy board are electrically connected with solder. The improved junction reliability is one of the main features of this product.

Figure 5: No solder crack confirmed regarding improved product series; source: KYOCERA AVX

Miniaturization of Crystal Units

In recent years, the mounting density of electronic devices has increased due to the increasing number of functions of communication terminals for 5G communications, faster Wi-Fi®, and the electrification of onboard components.

In addition, due to the limited space available in the mounting area, the size of mounted components is becoming smaller. Among them, Kyocera developed excellent photolithography and ultra-high precision machining technology jointly with Osaka University, and we have succeeded in mass producing an ultra-small crystal unit, the CX1008SB Series.

If the size is reduced from the conventional size of 1.2 x 1.0mm to 1.0 x 0.8mm, the series resistance value (CI value) will increase by about 30%. To avoid
this, it was necessary to review the circuit design of the substrate on which the crystal is mounted.

Therefore, by optimizing the design of the crystal device using Kyocera’s proprietary piezoelectric analysis technology, Kyocera achieved a size as small as 1.0 x 0.8mm while also achieving electrical characteristics equivalent to 1.2 x 1.0 mm (Kyocera’s CX1210 Series). This made it possible to use the circuit on the board without making changes.

Plasma CVM Machining

With conventional machining accuracy, when a crystal device is miniaturized there is a problem that variations in electrical characteristics become large. Kyocera has resolved this problem with its ultra-high precision machining technology which Kyocera developed in collaboration with Osaka University.

This technology is a processing method that uses neutral radicals in plasma and chemical reactions on the surface of the workpiece, enabling precise control of crystal thickness and surface conditions. This has resulted in a successful reduction in frequency fluctuation.

Plasma is radiated to crystal wafers in atmospheric pressure, triggering a chemical reaction with neutral radicals to realize equal wafer thickness.

Source: KYOCERA AVX

Related Posts

Oscillators

Murata Releases 150C Automotive Crystals

5.6.2023
7
Capacitors

4th PCNS Registration Opens !

2.6.2023
21
Capacitors

Murata Unveils Compact MLCCs with Extended Creepage Distance

25.5.2023
91

Upcoming Events

Jun 13
June 13 @ 12:00 - June 16 @ 14:00 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Jun 14
11:00 - 12:00 CEST

STRETCH.flex 2.0 Stretchable PCB Technology to the Limits

Jun 20
June 20 @ 12:00 - June 22 @ 14:00 EDT

Copper and Gold Wire Bonding

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Filter Q Factor Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.