Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Smoltek CNF-MIM Capacitors Hit 1,000x Lower Leakage

    DigiKey Expands Line Card with 108K Stock Parts and 364 Suppliers

    Würth Elektronik Announces Partner Program

    Vishay Releases Compact 0806 Low‑DCR Power Inductor

    Murata Opens New Ceramic Capacitor Manufacturing and R&D Center in Japan

    Murata Publishes Power Delivery Guide for AI Servers

    Selecting Current Sense Transformers with Würth Elektronik REDEXPERT

    Mechanical Drift Indicator of Tantalum Capacitor Anodes Degradation under Reverse Bias

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Smoltek CNF-MIM Capacitors Hit 1,000x Lower Leakage

    DigiKey Expands Line Card with 108K Stock Parts and 364 Suppliers

    Würth Elektronik Announces Partner Program

    Vishay Releases Compact 0806 Low‑DCR Power Inductor

    Murata Opens New Ceramic Capacitor Manufacturing and R&D Center in Japan

    Murata Publishes Power Delivery Guide for AI Servers

    Selecting Current Sense Transformers with Würth Elektronik REDEXPERT

    Mechanical Drift Indicator of Tantalum Capacitor Anodes Degradation under Reverse Bias

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Qualification of Commercial Off-The- Shelf Supercapacitors for Space Applications

5.2.2025
Reading Time: 7 mins read
A A

source: EGGO Space s.r.o ; ESA SPCD 2018 Symposium

EPCI e-symposium library article

RelatedPosts

ESA Call for Papers 6th Space Passive Component Days – SPCD 2026

High-Density PCB Assemblies For Space Applications

Solid State Polymer Multilayer Capacitors For High Temperature Application

The Skeleton SpaceCap product development started in 2011 as part of an ESA commissioned activity to produce a capacitor based on Skeleton’s proprietary Carbide Derived Carbon material. The resulting SpaceCap product is a 100F capacitor with a very high power density of 92 kW/L. The product is now in a qualification phase concerning electrical and mechanical aspects. Radiation performance will be evaluated and qualified in potential follow up activities.

The SpaceCap product presentation will focus on product specifications, results of qualification tests conducted up to date and the equivalent capacitor model to showcase the variation in capacitance (C) and internal resistance (ESR) at different application times (from 1 microsecond to 10 seconds at various temperatures).

One of the main SpaceCap design drivers is to reach 18 years of lifetime at 20 °C at an operating voltage of 2.5 V (derated from 2.85V nominal).

Theme of the presentation will focus on comparative test results (performed by EGGO Space s.r.o) of large format supercapacitors from Skeleton Technologies and well-known competitors. All supercapacitor manufacturers use different measurement techniques making datasheet-based comparison incomparable. The test results presented have been performed according to IEC 62391 standard methods and thus provide high quality results with 10 units tested of each product.

In the tests Skeleton Technologies’ COTS supercapacitors have shown exemplary power performance due to considerably lower ESR in comparison to competing products. The ESR of the best competing product was found to be twice as high with many competitor products having an ESR nearly three times as high.

published by EPCI under approval of ESA SPCD 2018 organizing committee.


Title: Qualification of Commercial Off-The- Shelf Supercapacitors for Space Applications

Author(s): David Latif (1), Petr Vašina (1), Lukáš Diblík (1)

Organisation(s): (1) EGGO Space s.r.o , Dvořákova 328 56301 Lanškroun ,Czech Republic
Symposium: ESA SPCD 2018
Reference: Test, Reliability & Evaluation for space 3.
ISBN: N/A
e-Sessions Applications: Aerospace
e-Sessions Scope Components: Capacitors
e-Sessions Topics: Test & Measurement


INTRODUCTION

Supercapacitors also called electrochemical double layer capacitors are energy storage devices storing high volume of electric energy in the double layer between a high surface area electrode and an electrolyte. As compared to batteries no chemical reactions should occur at the electrodes.

The use of supercapacitors on spacecrafts and launchers can be manifold and its use is very potential in other civil and military areas. To obtain a reliable data according to IEC 62391 resulted in development of new advanced technique in our lab.

Since, it’s essential for the any life time data assessment to have the results the one can trust. Nowadays it’s a serious issue to precisely measure the ESR values of high capacity supercapacitors from hundreds of Farads up. The reason is the very low level of ESR in order of hundreds of microohms. No AC RCL bridge we have got in our lab can measure such low values exactly. Also the results accuracy, its repeatability and reproducibility of such measurements is a nice challenge.

EGGO Company has already proved that during the previous projects of supercapacitors measurement, life assessment, qualification, modeling and bank design of the 10F cells is the right company to do so, but it’s a different story.

2. TESTED SAMPLES

For the measurement set up assessment we have chosen 4 different top manufacturers making high capacity supercapacitors of two different capacitance levels available on the market. The first capacitance level is 3000F + and the second one 1200 F. This should prove the measurement technique enough in order to rely on during the consequent reliability/life tests.

The list of selected manufacturers:
A) Skeleton
B) Maxwell
C) Nesscap
D) LS Mtron
E) IOXUS

Group – 1200 F

  • 1200 F SKELETON SCA1200 1200F 2,85V 1,35Wh
  • 1200 F LSUC 2,7V 1200F 1,22WhLs , Mtron Ltd
  • 1200 F Maxwell Tech BCAP1200 P270 1200F 2,7V 1,2Wh

Group 3000+ F

  • 3200 F SKELETON SCA3200 3200F 2,85V 3,61wh
  • 3000 F IOXUS i CAP iRB3000K270CT 3000F 2,7V 3,04Wh
  • 3400 F MAXWELL Tech K2SERIES BCAP3400 P285 3400F 2,85V 3,84Wh
  • 3400 F NESSCAP NE03V03400SW001 3400F 3,0V 4,2Wh
  • 3400 F Ls Mtron Ltd LSUC 2,85V 3400F 3,84W

3. TESTS DESCRIPTION

Initial capacity measurement methods have been applied in two specifications according to IEC 62391 and the measurement set up should be able to do so. Also the DC ESR measurements have been included into the measurement cycle. Capacitance measurement theory

Measurement method 1A
1. Constant charging current set to ICC=UR/38RN(ESR)
2. Charging up to rate voltage
3. Holding rate voltage for 30 min
4. Discharging with rate discharge current by IEC 62391
5. Time measurement span between two points U1 (0,8 UR) and U2 (0,4 UR)

Measurement method 1B
1. Constant charging current set to ICC=UR/38RN(ESR)
2. Charging up to rate voltage
3. Holding rate voltage 30 min
4. Discharging current set to ICC=UR/40RN(ESR)
5. Time measurement between two points, U1 (0,8 UR) and U2 (0,4 UR)

Simple formula how to determine capacitance from discharge region:

Fig.3. Time vs voltage during the capacitance measurement.

DC ESR measurement theory

Fig.4. Time vs voltage during the ESR measurement.

By the linear voltage versus time interpolation one can obtain inersetion where voltage drop can be calculated and DC ESR for Method 1A and Method 1B thru equation (only the ID current differs according to IEC62391) look like:

4. EXPERIMENTAL SETUP

The experimental setup was the key part of the project. The setup should handle high passing currents with very low losses as well as high accuracy voltage readings with reasonable sample rates. In our setup we have used two power supplies able to deliver up to 600A and DC load able to dissipate up to 500A. Since, this is modular thing that can be upgraded either to do higher current job or work at higher voltages e.g. at capacitor banks. The first thing we had to do was to remove all ballast devices from power supplies on the outer side, because they negatively affect both capacitance and ESR measurement results.

This is simple action but than we have realized, that it’s impossible to stabilize the output voltage. Therefore temporary load has to be applied during the steady voltage conditions and must be released prior to main load activation. The other issue we have faced was the accuracy of voltage readings across the capacitor for ESR measurements, to be able to read and repeat values in
hundreds of picoohms.

You should be aware, when measure the voltage across the capacitor around rated voltage you have to use the range according to this level, but on the other hand you are loosing accuracy even if the precision meter is used. Higher precision also means slower sample rate. To overcome this point we are applying shift voltage to the meter close to the rated voltage (lower by 0.1-0.2V), which allow us to use single e.g. 0.2V measurement range. It’s essential that the four wire measurement technique has been utilized.

The last but not least part is PC software written in Keysight VEE environment. The software controls the power supplies, load and all other equipment. At the end of the measurement calculates Capacity, ESR values via mathematical treatments as well as always finds the exact time of any performed event to prevent time delays caused by control lines or PC to have an impact on result accuracy.

Fig.5. Simplified wiring diagram
Fig.6. Experimental setup view – see featured image

5. RESULTS

All measurements have been taken on the equipment described above and used as an input data for further testing (life testing, cycle testing…). Due to the tests are ongoing no other results can be presented within this paper.

Group 1200F

Capacitance plots

The resulting capacity of group 1200F shows higher initial capacitance than one should expect. The highest values have the Maxwell cells up to 20% above specification.

DC ESR plots
The ESR values for the Sceleton have three times lower ones to Maxwells and two times lower ones to LS supercapacitors. This will results in lower thermal losses during the cycle test and lower degradation caused by lower temperature.

Group 3000+F
Once again the initial capacitance is higher than specified in datasheets.

Method 1 B 3200 + cells

The ESR for the Skeleton cells is below 100 microohms, that is extremely good value.

6. CONCLUSION

Supercapacitors show its potential in Space applications and Skeleton is the one where its production capabilities are highly promising for future Space supplies of this kind of cells. EGGO Space Testhouse is due to this work and long time cooperation with Skeleton cells testing potential Lab for Qualification of this kind of Supercapacitors with a good know how and Lab equipment.

 

REFERENCES

Supercapacitor information resources:
1. www.skeletontech.com
2. www.nescapp.com
3. www.maxwell.com
4. www.ioxus.com
5. www.lsmtron.com

 


read the full technical paper in pdf here:

 

 

 

 

and presentation here:

 

Related

Recent Posts

Smoltek CNF-MIM Capacitors Hit 1,000x Lower Leakage

6.2.2026
4

Murata Opens New Ceramic Capacitor Manufacturing and R&D Center in Japan

5.2.2026
53

Murata Publishes Power Delivery Guide for AI Servers

4.2.2026
74

Mechanical Drift Indicator of Tantalum Capacitor Anodes Degradation under Reverse Bias

3.2.2026
33

Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

2.2.2026
28

Calculating Resistance Value of a Flyback RC Snubber 

2.2.2026
29

CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

28.1.2026
50

ESA Call for Papers 6th Space Passive Component Days – SPCD 2026

28.1.2026
43

Power Electronics Tools for Passives and Magnetic Designs

3.2.2026
86

Upcoming Events

Feb 11
16:00 - 17:00 CET

What’s Next in Power Electronics Design

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

Mar 3
16:00 - 17:00 CET

Cybersecurity at the Eleventh Hour – from RED to CRA – Information and Discussion

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version