• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Researchers at RCPTM Olomouc Developed Graphene Based Materials Boosting Supercapacitors Energy and Power Density to the World Record Values

2.7.2020

Snubber Capacitor Selection for SiC-Based Switching Converters

17.5.2022

Vishay Releases High Precision Compact Thin Film Wraparound Chip Resistor 

17.5.2022

TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

16.5.2022

Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

16.5.2022
  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Snubber Capacitor Selection for SiC-Based Switching Converters

    Vishay Releases High Precision Compact Thin Film Wraparound Chip Resistor 

    TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

    Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

    European Electronic Components Distribution Under Strong Demand and Allocation in Q1 2022

    Tecate Releases Small-Cell 3V Supercapacitors

    3D Systems to Deliver 3D Printed RF Components for Satellite Applications

    Kyocera to Build its Largest Plant in Japan for Crystals and Semiconductor Packages

    TDK to Build New Automotive MLCC Production Plant in Japan

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Flat Wire Inductors for Electrical Cars; WE Webinar

    Ferrite Filter Features and Selection Guide; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Snubber Capacitor Selection for SiC-Based Switching Converters

    Vishay Releases High Precision Compact Thin Film Wraparound Chip Resistor 

    TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

    Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

    European Electronic Components Distribution Under Strong Demand and Allocation in Q1 2022

    Tecate Releases Small-Cell 3V Supercapacitors

    3D Systems to Deliver 3D Printed RF Components for Satellite Applications

    Kyocera to Build its Largest Plant in Japan for Crystals and Semiconductor Packages

    TDK to Build New Automotive MLCC Production Plant in Japan

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Flat Wire Inductors for Electrical Cars; WE Webinar

    Ferrite Filter Features and Selection Guide; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Researchers at RCPTM Olomouc Developed Graphene Based Materials Boosting Supercapacitors Energy and Power Density to the World Record Values

2.7.2020
Reading Time: 3 mins read
0 0
0
SHARES
310
VIEWS

The next revolutionary step in supercapacitor technology development is closing its energy density gap to batteries while power density is closer to capacitors.

New supercapacitor active electrode materials based on graphene, that enable quick and safe energy charging at record-high level of energy and power density, have been developed and demonstrated by RCPTM Regional Centre of Advanced Technologies and Materials in Olomouc, Czech Republic.

RelatedPosts

Snubber Capacitor Selection for SiC-Based Switching Converters

Vishay Releases High Precision Compact Thin Film Wraparound Chip Resistor 

TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

Newly discovered materials overcome the main trade-off issue of supercapacitor technologies today – to reach either its maximum high energy density or high power density. The new 2D graphene-based material brings both parameters to record high level of electrical density up to 60 Wh/kg at 2 kW/kg with further potential to increase power densities up to 50kW/kg.

Two new materials using readily available fluorographene were explored. 3D covalently functionalized graphene and 2D highly N-doped graphene ready for cost-effective mass manufacturing of electrodes. Supercapacitors made from the new materials are exhibiting excellent stability and low drop of capacitance after thousands of charging cycles unlike some other supercapacitor technologies on the market today. 

The new materials significantly expand capabilities of current supercapacitors and present potential to further replace / empower batteries in wide range of electronic devices for automotive EV/HEV vehicles, smartphones, wearables, industrial, medical or space applications.      

“We explored two ways of boosting energy storage capabilities of graphene supercapacitor electrodes by (i) covalently functionalized 3D graphene and (ii) 2D extremely N-doped graphene structures using fluorographene chemistry. The 3D graphene material featured record level of energy density up to 1000F/g, nevertheless its power density limitation and high material cost made us to think about a completely different approach. The 2D highly N-doped graphene material showed extremely high power density result in combination with record energy density.”

explains prof. Michal Otyepka; RCPTM team leader

Doping graphene with heteroatoms can significantly alter its electronic structure, giving rise to novel 2D materials with tunable electronic, magnetic, and chemical properties that can be exploited in diverse applications not limited to supercapacitors. In particular, nitrogen doping can imprint active centers on graphene suitable (electro)catalytic, electrochemical (energy storage and sensors), and spintronic applications.

„The key novelty of our research on 2D material is previously unexplored process route using fluorographene to synthesize exceptionally highly N-doped graphene. Our innovative process enable to prepare very conductive 2D material with high density structure that increase concentration of charge nano-traps and conductive nano-channels, thus it brings high energy storage and power density capabilities together“

add Otyepka

A team of chemists and physicists at RCPTM demonstrated 2D N-doped graphene electrodes supercapacitors featuring record 150Wh/l at 5kW/kg with potential to further increase power density up to 50kW/kg. This highest ever reported energy density on graphene supercapacitors close the gap of energy densities with most of the conventional battery technologies while providing much faster unlimited cycles of fast charging and discharging at tenfold higher power density.      

For comparison – lead-acid batteries used in electric vehicles typically show energy density below 100 Wh/l, while the maximum energy density lithium ion battery – reach 100-265 Wh/kg or 250-670Wh/l with power density below 1kWh/kg.

Current fast-charging commercial supercapacitors have a relatively poor energy density typically below 10Wh/l. The latest research (published in 2020) demonstrated supercapacitors with energy densities up to 90Wh/l, significantly lower compare to the presented results herein.

Covalently functionalized graphene research as a suitable supercapacitor electrode material was published by the RCPTM team already in 2018 by Advanced Functional Materials „High-Performance Supercapacitors Based on a Zwitterionic Network of Covalently Functionalized Graphene with Iron Tetraaminophthalocyanine“ https://doi.org/10.1002/adfm.201801111 and „Covalently functionalized graphene as a supercapacitor electrode material“ in FlatChem Journal, in 2019 https://doi.org/10.1016/j.flatc.2018.12.004. The work was followed further in 2020 by ACS Sustainable Chem. Eng. publication „Tunable Synthesis of Nitrogen Doped Graphene from Fluorographene under Mild Conditions“ https://doi.org/10.1021/acssuschemeng.9b07161

Fluorographene based processes to prepare high energy graphene electrode material has been applied for patent

Acknowledgement

The project was supported by European Research Committee grants ERC projects No. 683024 and PoC 899245

Source: EPCI

Related Posts

Applications e-Blog

Snubber Capacitor Selection for SiC-Based Switching Converters

17.5.2022
7
Capacitors

Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

16.5.2022
6
Aerospace & Defence

Tecate Releases Small-Cell 3V Supercapacitors

16.5.2022
10

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About

© 2021 EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© 2021 EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.