• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Researchers Design And Patent Graphene Biosensors

29.8.2022

Paumanok Issues Passive Components in Oil and Gas Electronics Market Outlook 2023-2028

5.6.2023

Researchers Study Aluminum Dissolution to Increase Supercapacitor Voltages, Suggest New Way of Al Thin Film Deposition

5.6.2023

Frenetic Offers Frenetic Zero One Month Free Magnetic Design Tool

5.6.2023

Murata Releases 150C Automotive Crystals

5.6.2023

KAMIC Group Acquires Wound Components Specialist AGW Electronics

2.6.2023

4th PCNS Registration Opens !

2.6.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Paumanok Issues Passive Components in Oil and Gas Electronics Market Outlook 2023-2028

    Researchers Study Aluminum Dissolution to Increase Supercapacitor Voltages, Suggest New Way of Al Thin Film Deposition

    Frenetic Offers Frenetic Zero One Month Free Magnetic Design Tool

    Murata Releases 150C Automotive Crystals

    KAMIC Group Acquires Wound Components Specialist AGW Electronics

    4th PCNS Registration Opens !

    Ceramic Capacitors Benefits in Military SiC Converters

    Exploring Frenetic and Maxwell Options for an Optimal Transformer Performance in LLC Circuit

    TT Electronics Unveils Busbar Shunt Resistors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Exploring Frenetic and Maxwell Options for an Optimal Transformer Performance in LLC Circuit

    Fast 25kW SiC EV Charger Design; OnSemi and Würth Elektronik Webinar

    PFC Inductor Magnetic Design Considerations; Frenetic Webinar

    Introduction to Capacitor Technologies; WE Webinar

    Self-Adjusting and Economical Switched Capacitor Balancer for Serially Connected Storage-Cells

    How to Design EMC Efficient Power Converter; WE Webinar

    Selecting Capacitors for High Power Buck-Booster Converters

    How to use Off-the-Shelf Transformers in Switching Power Supplies

    Simple Capacitors Pre-Charger Based on Unique ‘Floating Integrator’

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Paumanok Issues Passive Components in Oil and Gas Electronics Market Outlook 2023-2028

    Researchers Study Aluminum Dissolution to Increase Supercapacitor Voltages, Suggest New Way of Al Thin Film Deposition

    Frenetic Offers Frenetic Zero One Month Free Magnetic Design Tool

    Murata Releases 150C Automotive Crystals

    KAMIC Group Acquires Wound Components Specialist AGW Electronics

    4th PCNS Registration Opens !

    Ceramic Capacitors Benefits in Military SiC Converters

    Exploring Frenetic and Maxwell Options for an Optimal Transformer Performance in LLC Circuit

    TT Electronics Unveils Busbar Shunt Resistors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Exploring Frenetic and Maxwell Options for an Optimal Transformer Performance in LLC Circuit

    Fast 25kW SiC EV Charger Design; OnSemi and Würth Elektronik Webinar

    PFC Inductor Magnetic Design Considerations; Frenetic Webinar

    Introduction to Capacitor Technologies; WE Webinar

    Self-Adjusting and Economical Switched Capacitor Balancer for Serially Connected Storage-Cells

    How to Design EMC Efficient Power Converter; WE Webinar

    Selecting Capacitors for High Power Buck-Booster Converters

    How to use Off-the-Shelf Transformers in Switching Power Supplies

    Simple Capacitors Pre-Charger Based on Unique ‘Floating Integrator’

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Researchers Design And Patent Graphene Biosensors

29.8.2022
Reading Time: 4 mins read
0
SHARES
0
VIEWS

Graphene is the first truly two-dimensional crystal, which was obtained experimentally and investigated regarding its unique chemical and physical properties. In 2010, two MIPT alumni, Andre Geim and Konstantin Novoselov were awarded the Nobel Prize in Physics “for ground-breaking experiments regarding the two-dimensional material graphene”. There has now been a considerable increase in the number of research studies aimed at finding commercial applications for graphene and other two-dimensional materials. One of the most promising applications for graphene is thought to be biomedical technologies, which is what researchers from the Laboratory of Nanooptics and Plasmonics at the MIPT’s Center of Excellence for Nanoscale Optoelectronics are currently investigating.

Label-free biosensors are relatively new in biochemical and pharmaceutical laboratories, and have made work much easier. The sensors enable researchers to detect low concentrations of biologically significant molecular substances (RNA, DNA, proteins, including antibodies and antigens, viruses and bacteria) and study their chemical properties. Unlike other biochemical methods, fluorescent or radioactive labels are not needed for these biosensors, which makes it easier to conduct an experiment, and also reduces the likelihood of erroneous data due to the effects that labels have on biochemical reactions. The main applications of this technology are in pharmaceutical and scientific research, medical diagnostics, food quality control and the detection of toxins. Label-free biosensors have already proven themselves as a method of obtaining the most reliable data on pharmacokinetics and pharmacodynamics of drugs in pre-clinical studies. The advantages of this method are explained by the fact that the kinetics of the biochemical reactions of the ligand (active substance) with different targets can be observed in real time, which allows researchers to obtain more accurate data about the reaction rates, which was not previously possible. The data obtained gives information about the efficacy of a drug and also its toxicity, if the targets are “healthy” cells or their parts, which the drug, ideally, should not affect.

RelatedPosts

Paumanok Issues Passive Components in Oil and Gas Electronics Market Outlook 2023-2028

Researchers Study Aluminum Dissolution to Increase Supercapacitor Voltages, Suggest New Way of Al Thin Film Deposition

Frenetic Offers Frenetic Zero One Month Free Magnetic Design Tool

Most label-free biosensors are based on the use of surface plasmon resonance (SPR) spectroscopy. The “resonance” parameters depend on the surface properties to such an extent that even trace amounts of “foreign” substances can significantly affect them. Biosensors are able to detect a trillionth of a gram of a detectable substance in an area of one square millimetre.

Commercial devices of this type are sold in a format similar to “razor blade” business model, which includes an instrument and highly expensive consumables. The instrument is the biosensor itself, comprising optics, microfluidics and electronics. The consumables for biosensors are sensor chips comprised of a glass substrate, thin gold film and a linking layer for the adsorption of biomolecules. Sensor chips currently use two types of linking layer technology that were developed more than 20 years ago and are based either on a layer of self-assembled thiol molecules, or a layer of hydrogel (usually carboxymethyl dextran). The profit that companies have received from the sale of biosensors and consumables is evenly distributed at a ratio of 50:50.

The authors of the patent, Aleksey Arsenin and Yury Stebunov, are proposing an alternative to existing sensor chips for biosensors based on surface plasmon resonance. Under certain conditions, the use of graphene or graphene oxide as a linking layer between metal film and a biological layer comprised of molecule targets is able to significantly improve the sensitivity of biodetection. The graphene sensor chips were tested on Biacore™ T200 (General Electric Company) and BiOptix 104sa biosensors.

The use of graphene oxide sensor chips to analyse DNA hybridization reactions is described in detail in a recent paper by the authors in the American Chemical Society’s journal ACS Applied Materials & Interfaces. In addition to a higher level of sensitivity than similar commercial products, the proposed sensor chips possess the required property of biospecificity and can be used multiple times, which greatly reduces the costs of conducting biochemical studies using the chips.

The use of graphene increases the sensitivity of analyses conducted using SPR spectroscopy more than ten times, which will revolutionize the field of pharmaceutical biodetection. The application of biosensors is currently limited to analysing biological products based on large molecules, whilst more than half of the drugs produced each year have a low molecular weight (no more than a few hundred Daltons). Immobilization of drug targets on the surface of a graphene chip will enable scientists to test the interaction between targets and small molecules. An example of this could be the development of drugs that act on receptors coupled with G-proteins (GPCRs), which are currently the targets for 40% of drugs on the market. Pharmaceutical studies of drugs acting on GPCRs are not currently conducted using SPR due to the insufficient sensitivity of the method. It is therefore expected that the use of graphene biosensors in pharmaceutical studies will help to accelerate the development of drugs and overcome dangerous diseases that cannot be treated with the drugs currently on the pharmaceutical market.

The authors are continuing to work to improve their development and expect that for certain reactions, biosensor chips based on the new carbon materials will provide a level of sensitivity that is dozens or hundreds of times higher than similar commercial products currently on the market. They are also considering the possibility of commercializing graphene chips. In 2014 alone, approximately 10 billion US dollars were spent on pre-clinical studies. According to estimates, the annual market for biosensor chips is worth a total of approximately 300 million US dollars. The excellent properties of graphene biosensor chips will enable them to compete strongly with existing types of chips – up to one third of the entire market.

Source: ECN

Related Posts

Capacitors

Borealis Launches Stelora™ High-Heat-Resistant Capacitor Polymer Film Dielectric

3.5.2023
111
Inductors

Magnetics Announced New XFlux Ultra Magnetic Powder Cores

3.5.2023
57
Capacitors

Researchers to Translate Nitrogen-Doped Graphene into High Energy Supercapacitor Prototypes  

31.10.2022
6

Upcoming Events

Jun 13
June 13 @ 12:00 - June 16 @ 14:00 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Jun 14
11:00 - 12:00 CEST

STRETCH.flex 2.0 Stretchable PCB Technology to the Limits

Jun 20
June 20 @ 12:00 - June 22 @ 14:00 EDT

Copper and Gold Wire Bonding

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Filter Q Factor Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.