• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication
Energy storage in (La1-xBixFeO3)n/(BiFeO3)m superlattices. Device schematic
for capacitive geometry for polarization-electrical field loop measurements. (left) Measured energy stored as a function of applied
electric field for the antiferroelectric sample (right); Source: Cornell University

Researchers Propose New Lead-Free Antiferroelectric Material for High Energy Capacitors

11.2.2022

Snubber Capacitor Selection for SiC-Based Switching Converters

17.5.2022

Vishay Releases High Precision Compact Thin Film Wraparound Chip Resistor 

17.5.2022

TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

16.5.2022

Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

16.5.2022
  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Snubber Capacitor Selection for SiC-Based Switching Converters

    Vishay Releases High Precision Compact Thin Film Wraparound Chip Resistor 

    TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

    Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

    European Electronic Components Distribution Under Strong Demand and Allocation in Q1 2022

    Tecate Releases Small-Cell 3V Supercapacitors

    3D Systems to Deliver 3D Printed RF Components for Satellite Applications

    Kyocera to Build its Largest Plant in Japan for Crystals and Semiconductor Packages

    TDK to Build New Automotive MLCC Production Plant in Japan

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Flat Wire Inductors for Electrical Cars; WE Webinar

    Ferrite Filter Features and Selection Guide; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Snubber Capacitor Selection for SiC-Based Switching Converters

    Vishay Releases High Precision Compact Thin Film Wraparound Chip Resistor 

    TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

    Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

    European Electronic Components Distribution Under Strong Demand and Allocation in Q1 2022

    Tecate Releases Small-Cell 3V Supercapacitors

    3D Systems to Deliver 3D Printed RF Components for Satellite Applications

    Kyocera to Build its Largest Plant in Japan for Crystals and Semiconductor Packages

    TDK to Build New Automotive MLCC Production Plant in Japan

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Flat Wire Inductors for Electrical Cars; WE Webinar

    Ferrite Filter Features and Selection Guide; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Researchers Propose New Lead-Free Antiferroelectric Material for High Energy Capacitors

11.2.2022
Reading Time: 3 mins read
0 0
Energy storage in (La1-xBixFeO3)n/(BiFeO3)m superlattices. Device schematic
for capacitive geometry for polarization-electrical field loop measurements. (left) Measured energy stored as a function of applied
electric field for the antiferroelectric sample (right); Source: Cornell University

Energy storage in (La1-xBixFeO3)n/(BiFeO3)m superlattices. Device schematic for capacitive geometry for polarization-electrical field loop measurements. (left) Measured energy stored as a function of applied electric field for the antiferroelectric sample (right); Source: Cornell University

0
SHARES
97
VIEWS

Group of researchers from Cornell University, US propose a new lead-free antiferroelectric dielectric material made from bismuth, iron and oxygen as a suitable candidate for next generation of high energy capacitors.

The paper Published in Science Advances describes a new type of “antiferroelectric” material, which could be very useful in devices where quick storage or discharge of energy is needed – such as in defibrillators. But as yet, most antiferroelectric materials contain lead, making them less useful. In their paper, the researchers state that the material has a lot of potential to be a powerful capacitor.

RelatedPosts

Snubber Capacitor Selection for SiC-Based Switching Converters

Vishay Releases High Precision Compact Thin Film Wraparound Chip Resistor 

TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

Researchers demonstrated the use of electrostatic boundary conditions to liberate an otherwise metastable state of BiFeO3, which displays high-energy storage density; this value could potentially be further enhanced by tuning the dielectric constant of the neighboring layer to alter the stability of the antiferroelectric phase and tuning field. In the case of the new antiferroelectric/antiferromagnetic BiFeO3, an applied electric field could potentially turn on and off magnetism with the conversion to the ferroelectric/weak ferromagnetic BiFeO3 parent phase.

Abstract

Antiferroelectric materials have seen a resurgence of interest because of proposed applications in a number of energy-efficient technologies. Unfortunately, relatively few families of antiferroelectric materials have been identified, precluding many proposed applications. Here, we propose a design strategy for the construction of antiferroelectric materials using interfacial electrostatic engineering. We begin with a ferroelectric material with one of the highest known bulk polarizations, BiFeO3. By confining thin layers of BiFeO3 in a dielectric matrix, we show that a metastable antiferroelectric structure can be induced. Application of an electric field reversibly switches between this new phase and a ferroelectric state. The use of electrostatic confinement provides an untapped pathway for the design of engineered antiferroelectric materials with large and potentially coupled responses.

Figure 1. Energy storage in (La1-xBixFeO3)n/(BiFeO3)m superlattices; source: Cornell University

As shown in Figure 1.C, there is very little energy stored in a ferroelectric sample as the material is almost entirely saturated at zero bias. In the case of the antiferroelectric sample, however, there is almost zero polarization at zero field, and it has a much higher integrated storage capacity as depicted in Figure 1.D. Figure 1.E plots the stored energy as a function of applied electric field for the sample shown in Figure 1.D.

The average integrated energy plotted was computed from multiple polarization field hysteresis loops acquired over several individual capacitors on the sample. As shown, the sample reaches a peak of ~30 J/cm3 at a field of ~2.7 MV/cm. After this voltage, there is appreciable electrical leakage that prevents accurate calculation of the stored energy.

Tuning the dielectric layer in the sample alters the energy barrier between the antiferroelectric and ferroelectric phases and thus the switching field/stored energy. This highlights the extreme tunability of this system. This value of the stored energy density, 30 J/cm3, compares favorably to other perovskite systems that contain lead. It is also higher than the lead-free relaxor SrTiO3-substituted BiFeO3 thin films (~18 J/cm3) and BiFeO3/SrTiO3 superlattices (~12 J/cm3).

Source: Science.org

Related Posts

Applications e-Blog

Snubber Capacitor Selection for SiC-Based Switching Converters

17.5.2022
6
Aerospace & Defence

Vishay Releases High Precision Compact Thin Film Wraparound Chip Resistor 

17.5.2022
5
Automotive

TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

16.5.2022
14

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0

Newsletter Subscription

 

  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About

© 2021 EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© 2021 EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.