• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Researchers Introduced New NBST-based Ferroelectric Dielectric Material with Excellent Energy Storage Performance

11.8.2022

Flying Capacitors Explained

17.3.2023

TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

16.3.2023

ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

16.3.2023

Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

15.3.2023

TDK Extends Range of Industrial Single Pair Ethernet (SPE) Inductors

15.3.2023

Premo Unveils New series of 11kW 3-Phase On-Board Charger Transformers

15.3.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    TDK Extends Range of Industrial Single Pair Ethernet (SPE) Inductors

    Premo Unveils New series of 11kW 3-Phase On-Board Charger Transformers

    TAIYO YUDEN Releases 150C Automotive Power Inductors

    TAIYO YUDEN Announces Completion of MLCC Material Building

    TDK’s High-Impedance Multilayer Common Mode Filters Mitigates Noise Issues in Automotive Interfaces

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    TDK Extends Range of Industrial Single Pair Ethernet (SPE) Inductors

    Premo Unveils New series of 11kW 3-Phase On-Board Charger Transformers

    TAIYO YUDEN Releases 150C Automotive Power Inductors

    TAIYO YUDEN Announces Completion of MLCC Material Building

    TDK’s High-Impedance Multilayer Common Mode Filters Mitigates Noise Issues in Automotive Interfaces

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Researchers Introduced New NBST-based Ferroelectric Dielectric Material with Excellent Energy Storage Performance

11.8.2022
Reading Time: 4 mins read
0 0
0
SHARES
272
VIEWS

Chinese researchers have fabricated a ferroelectric ceramic dielectric material with reduced grain size for improved energy storage capability. This research has been published in the journal of Chemical Engineering Journal.

NBT and NBST dielectric materials

RelatedPosts

Researchers Believe that Antiferroelectric Superlattice Materials Can Yield in Next Gen of High Energy Capacitors

Researchers Propose New Lead-Free Antiferroelectric Material for High Energy Capacitors

Electroninks Releases Gold and Platinum Particle-Free Conductive Inks

(Na0.5Bi0.5)TiO3 (NBT)-based ferroelectrics have very high Curie point (Tc = ~320◦C) and large maximum polarization (Pmax) of over 40 μC/cm2. However, NBT ceramics have low energy storage efficiency due to their high remnant polarization (Pr), which severely hampers its energy storage performance. Many researchers have tried to destroy the long-range order of ferroelectrics such as NBT-based ceramics by doping with various chemical reagents to make them behave like a relaxor ferroelectric with a reduced remnant polarization.

The researchers added linear dielectrics such as SrTiO3 and antiferroelectric additives such as NaNbO3 as modifiers in NBT-based ceramic. The resulting (Na0.5Bi0.5)0.7 Sr0.3TiO3 (NBST) exhibited enhanced recoverable energy density, efficiency, and slender polarization vs electric field loop.

Out of several compositions of ((1-x) NBST-xBMS, 0 ≤ x ≤ 0.15), optimal energy-storage performances were achieved for 0.9NBST-0.1BMS composition. 0.9NBST-0.1BMS has a perovskite structure with no impurities. However, impurities start to appear for the 0.85NBST-0.15BMS samples and above i.e. (x>0.15), due to the decreasing solubility of BMS in NBST.

The presence of Mg2+ and Sn4+ in B-sites effectively destroyed the long-range order of 0.9NBST-0.1BMS ferroelectric, thus resulting in a weak coupling structure, which improved energy storage efficiency. It also showed high-temperature stability and frequency insensitivity of recovery energy density and efficiency, which is crucial for normal work at elevated temperatures. Additionally, the additive BMS significantly reduced the grain size of the ceramic, which increased the breakdown field.

It was observed that with the increase of BMS content, both maximum polarization (Pmax) and remnant polarization (Pr) decreased, and the polarization-electric field hysteresis loop became slender, which is beneficial to enhance energy storage performance.

Highlights of the new material:

  • 0.9NBST-0.1BMS lead-free ceramics with Wrec = 6.68 J/cm3 and η = 89.1 % were designed and fabricated.
  • Small grain size and high activation energy of grain boundary leads to high breakdown field (405 kV/cm).
  • The energy storage potential (Wrec/Eb) is up to 0.01649 μC/cm2.
  • Excellent fatigue endurance over 105 electrical cycles (the Wrec variation is less than 1.5%).

Abstract

Ferroelectric ceramics, as a potential candidate for high-power energy storage capacitors, lies in their excellent recoverable energy storage density (Wrec) and outstanding efficiency (η) in practical applications. Herein, a new type of lead-free ceramics (1-x)(Na0.5Bi0.5)0.65Sr0.35TiO3–xBiMg0.5Sn0.5O3 or (1-x)NBST-xBMS was prepared with the aim of enhancing the breakdown strength (Eb) and reducing the energy storage loss through grain refinement. It was found that Eb of 0.9NBST-0.1BMS reaches 405 kV/cm due to the reduction in the grain size of ceramic and thus the extremely high ratio of grain boundary resistance to grain resistance.

Besides, a remarkable energy-storage performance was obtained, that is, Wrec and η are ∼ 6.68 J/cm3 and 89.1% at 405 kV/cm, respectively, along with excellent stability in terms of frequency, temperature, and fatigue endurance. The outstanding energy-storage performance is resulted from modulating the grain size via doping the moderate content of Bi3+ and Mg2+/Sn4+, which is beneficial to increase the breakdown field by increasing resistivity under high electric field while increasing the grain boundary activation energy and promote the formation of a relaxor state at the same time. More importantly, energy storage potential (defined as Wrec/Eb) is up to 0.01649 μC/cm2, being the highest value reported so far for BNT-based ceramics in energy-storage application. Our results pave the way for practical applications of NBST-based ferroelectric capacitors with excellent energy storage performance.

Reference

Y. Gao, X. Zhu, B. Yang, P. Shi, R. Kang, Y. Yuan, Q. Liu, M. Wu, J. Gao, X. Lou, Grain size modulated (Na0.5Bi0.5)0.65Sr0.35TiO3-based ceramics with enhanced energy storage properties, Chemical Engineering Journal, 2021, 133584. https://doi.org/10.1016/j.cej.2021.133584

Source: Chemical Engineering Journal

Related Posts

Capacitors

Flying Capacitors Explained

17.3.2023
9
Market & Supply Chain

ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

16.3.2023
36
Capacitors

Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

15.3.2023
56

Upcoming Events

Mar 19
March 19 - March 23

APEC 2023

Mar 22
14:00 - 15:00 CET

Parasitic Components in Power Converters – Fundamentals and Measurements Rohde & Schwarz Webinar

Apr 3
April 3 @ 12:00 - April 4 @ 14:00 CEST

Microelectronic Packaging Failure Modes and Analysis

View Calendar

Popular Posts

  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • RC Snubber Design for SMPS Protection

    0 shares
    Share 0 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.