Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samtec Expands Connector Severe Environment Testing Offering

    Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

    YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

    Enhancing Energy Density in Nanocomposite Dielectric Capacitors

    Advances in the Environmental Performance of Polymer Capacitors

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

    Paumanok Releases Capacitor Foils Market Report 2025-2030

    Modelithics Welcomes CapV as a Sponsoring MVP

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samtec Expands Connector Severe Environment Testing Offering

    Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

    YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

    Enhancing Energy Density in Nanocomposite Dielectric Capacitors

    Advances in the Environmental Performance of Polymer Capacitors

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

    Paumanok Releases Capacitor Foils Market Report 2025-2030

    Modelithics Welcomes CapV as a Sponsoring MVP

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Resonant Capacitors in Implantable Medical Devices Wireless Power Transfer

8.12.2023
Reading Time: 4 mins read
A A

This article based on Knowles Precision Devices blog explains how resonant wireless power transfer works, its application in medical devices and role of resonant capacitors.

With the rising prevalence of cardiovascular, orthopedic, and other chronic conditions, and an increase in the number of patients needing care, the demand for implantable medical devices continues to increase. 

RelatedPosts

Knowles Releases High Q Non-Magnetic X7R MLCCs for Medical Imaging

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

Knowles Releases Inductors for Mission-Critical RF Applications

Today, many medical implantable devices are limited by the lifetime of their primary battery.

That power is finite, and battery replacement can be inconvenient, costly, and painful for patients. Wired sources aren’t a suitable alternative due to safety concerns, including increased risk for infections and disease. Devices like pacemakers, neural stimulators, cochlear implants, retinal implants and drug delivery systems all benefit from safe, effective means of wireless charging.

The Rise of Resonant Wireless Power Transfer

The growing popularity of resonant wireless power transfer (RWPT) is a confluence of three trends in the medical implantable device space:

  • Miniaturization: Implantable medical devices continue to shrink, and efficient wireless charging is critical for maintaining functionality without increasing a device’s footprint.
  • Tighter Energy Efficiency Specifications: With more devices requiring consistent power, there’s a growing desire to optimize charging systems to reduce energy loss and improve overall system efficiency.
  • High Standards for Safety and Reliability: Making implantable devices safer calls for technological advancements in power delivery.

RWPT is known for efficiency and the ability to transfer power over longer distances with minimal loss. In implantable devices, RWPT eliminates the need for wires, enhances device longevity and reduces the risk of infection.

Resonant Wireless Power Transfer Systems

RWPT systems are designed to leverage the oscillating magnetic fields between the TX and RX coils to transfer power wirelessly. In terms of components, the transmitter, consisting of the battery, inverter, DC-to-DC converter and TX coil, is located outside the body. The receiver, which includes the RX coil, rectifier, DC-to-DC converter and load, is inside the body. 

Wireless power transfer principle in implantable medical devices

When RF signals are received, they’re converted into usable direct current (DC) power, which can be stored or used to power the implantable device. The transmitter and receiver are tuned to the same frequency to maximize that energy transfer. This technique is resonant by nature, which minimizes energy loss during transfer and ensures the implantable device receives adequate power.

Inherently, RWPT accommodates compact design and efficient receiving coils because the receiver coil and associated electronics are integrated into the device itself. This also ensures energy transmission even if the TX and RX coils aren’t perfectly aligned or are farther away. 

Capacitors: The Heart of RWPT Systems

Capacitors play a crucial role in maintaining system resonance and efficiency. In association with the RX coil, resonant capacitors are used in the resonant tank circuit to fine-tune the resonant frequency. Further, bypass and decoupling capacitors filter out noise and smooth voltage fluctuations to stabilize the voltage supply. A variety of other capacitors perform filtering functions to keep the signal smooth too.

Ceramic capacitors are well-positioned to fill these roles because of their:

  • Small size
  • High capacitance values
  • Low equivalent series resistance (ESR)
  • Wide voltage ratings
  • Fast charging and discharging
  • Temperature stability
  • High dielectric strength    

Knowles Precision Devices has a long history of testing and screening military-grade reliability specifications (MIL-SPECS) for defense and military applications, and we apply the same rigor to medical applications, including implantable medical devices. Continuing to innovate around implantable medical devices calls for a commitment to innovation in wireless charging, and we’re devoted to providing high-quality components to serve as the foundation of your design.

Related

Source: Knowles Precision Devices

Recent Posts

Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

10.10.2025
10

Enhancing Energy Density in Nanocomposite Dielectric Capacitors

9.10.2025
16

Advances in the Environmental Performance of Polymer Capacitors

8.10.2025
33

Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

8.10.2025
18

Paumanok Releases Capacitor Foils Market Report 2025-2030

7.10.2025
17

Modelithics Welcomes CapV as a Sponsoring MVP

7.10.2025
4

Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

3.10.2025
23

Electrolyte Selection and Performance in Supercapacitors

3.10.2025
33

Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

2.10.2025
25

Stackpole Offers High Voltage Plate Resistors up to 40KV

2.10.2025
22

Upcoming Events

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Oct 28
8:00 - 15:00 CET

Power Up Your Design: SN6507 and the Ready-to-Use Development Kit

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version