• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication
Supercapacitors in rail applications. credit: Skeleton

Skeleton Technologies’ Graphene-Based Supercapacitors

11.10.2021

Basics of PCB production, Part 1; WE Webinar

30.6.2022

KEMET Introduces 1kV Automotive Grade Common Mode Choke

30.6.2022

Smoltek Signs MoU for its CNF-MIM Capacitor Manufacturing Joint Venture

30.6.2022

Vishay Introduced Leadless NTC Thermistor Dies with Versatile Mounting Options

29.6.2022
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    KEMET Introduces 1kV Automotive Grade Common Mode Choke

    Smoltek Signs MoU for its CNF-MIM Capacitor Manufacturing Joint Venture

    Vishay Introduced Leadless NTC Thermistor Dies with Versatile Mounting Options

    CAP-XX Expanding its Supercapacitor Portfolio by Lithium-Ion Capacitors

    NA Component Sales Continue to Show Positive Growth

    Bourns Releases Semi-shielded Power Inductors

    KYOCERA AVX Launches New Interactive Component Search Tool

    YAGEO Presents Reverse Geometry MLCC with Reduced ESL

    Effects of Harsh Environmental Conditions on Film Capacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Basics of PCB production, Part 1; WE Webinar

    Effects of Harsh Environmental Conditions on Film Capacitors

    Common-mode Choke Parameters Explained; WE Webinar

    Ceramic Capacitors Loss Modelling under High DC Bias Voltage and High Current Stress

    MLCC Case Size Impact to Parameters

    NTC Thermistor in Fire Alarm Application LTSpice Simulation

    MLCC Ageing; Samsung Video

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    KEMET Introduces 1kV Automotive Grade Common Mode Choke

    Smoltek Signs MoU for its CNF-MIM Capacitor Manufacturing Joint Venture

    Vishay Introduced Leadless NTC Thermistor Dies with Versatile Mounting Options

    CAP-XX Expanding its Supercapacitor Portfolio by Lithium-Ion Capacitors

    NA Component Sales Continue to Show Positive Growth

    Bourns Releases Semi-shielded Power Inductors

    KYOCERA AVX Launches New Interactive Component Search Tool

    YAGEO Presents Reverse Geometry MLCC with Reduced ESL

    Effects of Harsh Environmental Conditions on Film Capacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Basics of PCB production, Part 1; WE Webinar

    Effects of Harsh Environmental Conditions on Film Capacitors

    Common-mode Choke Parameters Explained; WE Webinar

    Ceramic Capacitors Loss Modelling under High DC Bias Voltage and High Current Stress

    MLCC Case Size Impact to Parameters

    NTC Thermistor in Fire Alarm Application LTSpice Simulation

    MLCC Ageing; Samsung Video

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Skeleton Technologies’ Graphene-Based Supercapacitors

11.10.2021
Reading Time: 3 mins read
0 0
Supercapacitors in rail applications. credit: Skeleton

Supercapacitors in rail applications. credit: Skeleton

0
SHARES
148
VIEWS

Graphene-info published an article on Skeleton Technologies’s graphene-based supercapacitors and its technology developments based on its talk with the company VP of automotive products, Sebastian Pohlmann.

Germany-based Skeleton Technologies has been on the forefront of graphene-based supercapacitors development for many years, and the company recently made some major announcements, including a large (>€70 million) financing round, the super-battery project and several strategic customers and projects – including ones with Medcom, Skoda, CAF, Wrightbus and Marubeni.

RelatedPosts

Skeleton Curved Graphene Scientists Named as European Inventor Award 2022 Finalists

Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

Supercapacitors Assist Diesel Locomotives Start At Winter Conditions

Skeleton produces graphene-enhanced supercapacitors, based on its curved-graphene technology (we will explain that below). According to the company, its capacitors are the best performing capacitors in the world, with the highest density – and by a large margin over its competition (see this US Navy test that compares Skeleton’s supercaps to four other types).

The enhanced performance is behind Skeleton’s extremely fast growth in the last few years, as the company supplies its solutions to a wide range of applications. The company reports a back log of over $200 million in products that it will supply in the next years. To support its fast growth, Skeleton is developing new production technologies and scaling up its capacity with support from the German government. Skeleton has tripled its revenues for three years in a row up to 2020, and in 2021 it hopes to continue its fast growth.

Skeleton has already raised over 170 million Euro in private funding rounds, and received numerous grants and project awards. With these impressive orders and financing rounds, we hope the company may become public via an IPO in the future.

Skeleton is targeting four main markets: the automotive one (cars), transportation (trains, trams, buses, etc.), industrial systems (such as oil and gas systems, construction, medical and more) and the power grid. It sees good demand and growth in sales across all of its markets.

Two popular applications today are wind pitch control and grid energy storage solutions. Wind pitch control systems are traditionally powered by lead-acid batteries, but newer turbines are adopting supercapacitors which outperform the old solutions. Skeleton is supplying its capacitors to many such turbines, and this market will likely continue to grow in the future.

Another important application lies in the grid. Large power banks (up to 100Mw) are used today to regulate the grid, and these installations need to release their power quickly, which is where Skeleton’s supercapacitors come into play.

As we said, the automotive market is of great interest to Skeleton, even though currently its sales do not represent a large portion of the company’s revenues. The company can share that it has started to supply supercapacitors to a leading automotive maker in Germany, that will use these in future active suspensions.

In future cars, however, Skeleton sees applications in brakes buffer power, and also in lower voltage applications – to take over the car’s 12V power supply and replace the currently-used Lead-Acid battery. Supercapacitors will outperform the batteries, and also are more environmentally friendly.

Looking even further ahead, Skeleton sees a big potential in hydrogen-powered cars (fuel cells) and also in smaller vehicles that will have small batteries and so will make use of the supercapacitors for brake power generation.

One of Skeleton’s key projects is its Superbattery, which also attracted a Letter of Intent from a major automotive OEM, in total worth of > 1$ billion. It will be several years before this technology enters the market, and the goal is to extend the performance of Skeleton’s supercapacitors to the point where these can be adopted as the power bank of hybrid cars. The technology increases energy density by almost a factor of 10x while still enabling fast charging and the high power density which supercapacitors are known for.

Skeleton’s main technology is its curved graphene, which is a type of graphene, but not a standard one – the material is nothing like the single-layer graphene sheets, but rather resembles crumbled up graphene, resulting in nanoscale 3D objects. The curved graphene retains the properties of graphene (high conductivity and large surface area) but can be inserted into electrodes much more easily compared to other graphene types. This enables Skeleton to achieve the high performance in its supercapacitors.

Source: Ggraphene-info

Related Posts

Automotive

KEMET Introduces 1kV Automotive Grade Common Mode Choke

30.6.2022
3
Capacitors

Smoltek Signs MoU for its CNF-MIM Capacitor Manufacturing Joint Venture

30.6.2022
3
Industrial

Vishay Introduced Leadless NTC Thermistor Dies with Versatile Mounting Options

29.6.2022
7

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Introduction to Capacitor Based Power Factor Correction Circuits

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Archive

2022
2021
2020
2019
2018
2017

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.