• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Solid metal has ‘structural memory’ of its liquid state

15.3.2017

WT Microelectronics to Acquire Future Electronics

20.9.2023

Circuit Protection Components 2023 Market Analysis

20.9.2023

Ink-Jet Printed Flexible Capacitors: Manufacturing and Ageing Tests

19.9.2023

4th PCNS Awards Passive Component Papers

19.9.2023

Benefits of Ceramic Capacitors as Bootstrap Capacitors

19.9.2023

Vishay Boosts Power Inductor Manufacturing Capacity in Mexico

19.9.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    WT Microelectronics to Acquire Future Electronics

    Circuit Protection Components 2023 Market Analysis

    Ink-Jet Printed Flexible Capacitors: Manufacturing and Ageing Tests

    4th PCNS Awards Passive Component Papers

    Benefits of Ceramic Capacitors as Bootstrap Capacitors

    Vishay Boosts Power Inductor Manufacturing Capacity in Mexico

    SUMIDA to Build New Inductive Components Factory in Northern Vietnam

    Oscillators Integration, Selection Guide and Design In

    X-FAB Provides Foundry Service for Passive Device Integration

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Oscillators Integration, Selection Guide and Design In

    Input Capacitor Selection for Power Supplies – Part 3: Electrolytic Capacitors

    Input Capacitor Selection for Power Supplies Part 2 – Ceramic Capacitors

    Input Capacitor Selection for Power Supplies Video (Part 1)

    Vishay Webinar: Components Selection for Solar Panel Systems

    Capacitors Basics: Decoupling

    Totem Pole PFC Design for E-Mobility; Microchip and WE Video

    High frequency model of the physical inductor: The Cauer model

    High frequency model of the physical inductor: The basic lumped model

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    WT Microelectronics to Acquire Future Electronics

    Circuit Protection Components 2023 Market Analysis

    Ink-Jet Printed Flexible Capacitors: Manufacturing and Ageing Tests

    4th PCNS Awards Passive Component Papers

    Benefits of Ceramic Capacitors as Bootstrap Capacitors

    Vishay Boosts Power Inductor Manufacturing Capacity in Mexico

    SUMIDA to Build New Inductive Components Factory in Northern Vietnam

    Oscillators Integration, Selection Guide and Design In

    X-FAB Provides Foundry Service for Passive Device Integration

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Oscillators Integration, Selection Guide and Design In

    Input Capacitor Selection for Power Supplies – Part 3: Electrolytic Capacitors

    Input Capacitor Selection for Power Supplies Part 2 – Ceramic Capacitors

    Input Capacitor Selection for Power Supplies Video (Part 1)

    Vishay Webinar: Components Selection for Solar Panel Systems

    Capacitors Basics: Decoupling

    Totem Pole PFC Design for E-Mobility; Microchip and WE Video

    High frequency model of the physical inductor: The Cauer model

    High frequency model of the physical inductor: The basic lumped model

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Solid metal has ‘structural memory’ of its liquid state

15.3.2017
Reading Time: 2 mins read
A A
0
VIEWS

source: Phys org. news

New work from a team including Carnegie’s Guoyin Shen and Yoshio Kono used high pressure and temperature to reveal a kind of “structural memory” in samples of the metal bismuth, a discovery with great electrical engineering potential.

RelatedPosts

WT Microelectronics to Acquire Future Electronics

Circuit Protection Components 2023 Market Analysis

Ink-Jet Printed Flexible Capacitors: Manufacturing and Ageing Tests

Bismuth is a historically interesting element for scientists, as a number of important discoveries in the metal physics world were made while studying it, including important observations about the effect of magnetic fields on electrical conductivity.

Bismuth has a number of phases. A chemical phase is a distinctive configuration of the molecules that make up a substance. Water freezing into ice or boiling into steam are examples of how changes in external conditions can induce a transition from one phase to another. But for physicists and materials scientists, application of extreme pressures and temperatures can bring about a large variety of other phases. For example, under increasing pressure and temperature conditions bismuth undergoes an array of phase transitions, including eight different types of solid phases observed so far.

In previous studies of bismuth, pressure-induced structural changes were not retained when the pressure was reduced. However, the research team—which included lead author Yu Shu and colleagues Dongli Yu, Wentao Hu, Bo Xu, Julong He, and Zhongyuan Liu of Yanshan University, and Yanbin Wang of University of Chicago—used a pathway of successive pressure and temperature conditions to create a form of bismuth that has a “structural memory” of a previous phase.

When bismuth is brought to a liquid state under between 14,000 and 24,000 times normal atmospheric pressure (1.4 to 2.4 gigapascals) and at about 1,800 degrees Fahrenheit (1,250 kelvin), and is then slowly cooled back to a solid state, the solid “remembers” some of the structural motifs of its liquid predecessor.

“The high-pressure liquid becomes more structurally disordered when the heat is applied, taking on what we call a ‘deep liquid’ state, certain structural characteristics of which remain even when the bismuth is cooled back to solid,” Shen explained. “This is the first time such an effect has been seen in an elemental metal.”

Fascinatingly, this “memory” is correlated with a shift from being repelled by a magnetic field to being attracted to a magnetic field. The team believes it will be possible to induce a similar shift in physical properties in other, similar, elements, including cerium, antimony, plutonium, and others.

Featured Image: This recovered bismuth sample has a rhombohedral structure and contains liquid structural motifs after deep melting at high pressures. The surprising structural memory effect in the molten state is responsible for the unexpected change from magnetic repulsion to magnetic attraction in bismuth. Credit: Yu Shu and Guoyin Shen.

 

Related Posts

PCNS

4th PCNS Awards Passive Component Papers

19.9.2023
26
Market & Supply Chain

Vishay Boosts Power Inductor Manufacturing Capacity in Mexico

19.9.2023
14
Market & Supply Chain

SUMIDA to Build New Inductive Components Factory in Northern Vietnam

19.9.2023
12

Upcoming Events

Sep 26
September 26 @ 12:00 - September 28 @ 14:00 EDT

Microwave Packaging Technology

Sep 26
16:00 - 17:00 CEST

Connector Temperature Rise and Derating

Oct 3
October 3 @ 12:00 - October 5 @ 14:00 EDT

Design and Test of Non-Hermetic Microelectronic

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Inductors and RF Chokes Basics

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Coefficient of Linear Thermal Expansion on Polymers Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Archive

2023
2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.