Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    DigiKey Expands Inventory with Over 32,000 Stocking NPIs in Q2 2025

    YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

    European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

    TDK Announced Wide Frequency Automotive Wirewound POC Inductors

    Bourns Released Rugged, High-Power TO-247 Thick Film Resistor

    Bourns Announced Shielded Power Inductor with High Saturation and Low Radiation

    Würth Elektronik Expands MagI³C with Variable Step-Down Modules

    KYOCERA AVX Releases 600MHz Band71 Compact SAW Duplexer

    binder Supports Miniaturization of Power Supplies with M12 Compact Connectors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    DigiKey Expands Inventory with Over 32,000 Stocking NPIs in Q2 2025

    YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

    European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

    TDK Announced Wide Frequency Automotive Wirewound POC Inductors

    Bourns Released Rugged, High-Power TO-247 Thick Film Resistor

    Bourns Announced Shielded Power Inductor with High Saturation and Low Radiation

    Würth Elektronik Expands MagI³C with Variable Step-Down Modules

    KYOCERA AVX Releases 600MHz Band71 Compact SAW Duplexer

    binder Supports Miniaturization of Power Supplies with M12 Compact Connectors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Supercaps Power Wireless Sensors

23.5.2018
Reading Time: 5 mins read
A A

source: Sensors mag article

Wireless sensor applications usually have a low duty cycle with a high peak power requirement to periodically or sporadically gather and transmit data drawing very low average power. This makes them ideal to be powered from an energy harvester coupled with a supercapacitor.

RelatedPosts

DigiKey Expands Inventory with Over 32,000 Stocking NPIs in Q2 2025

YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

Wireless sensors are becoming ubiquitous. They are used in applications ranging from HVAC, industrial control, condition monitoring, security monitoring, and location tracking. Providing power to these sensors can be a problem – it is too expensive to wire power to them, and batteries require replacement and disposal. The environment on the other hand, can provide effectively infinite energy but at very low power. These sensor applications usually have a low duty cycle with a high peak power requirement to periodically or sporadically gather and transmit data drawing very low average power. This makes them ideal to be powered from an energy harvester coupled with a supercapacitor. The energy harvester supplies a power management IC which charges the supercapacitor at very low power, and the supercapacitor provides the peak power burst for the sensor to collect and transmit data. Some typical applications include:

  • Sensors reporting over the cloud in the Internet of things.
  • Solar cells to power sensors reporting temperature & humidity for HVAC, light levels to control lighting, movement detectors to determine if lights should be switched off / on.
  • Vibration transducers (micro-generator or piezo-electric) to power sensors reporting vibration spectra for condition monitoring of rotating machines, for condition monitoring and location tracking of railway rolling stock, location tracking of containers, monitoring stress in structures such as bridges and dams, monitoring vibration and stress in airframes.
  • RF for rapid wireless charging of a supercapacitor that then enables encrypted card transactions, monitoring reporting user data in wearables.

 

Figure 1 shows the typical power architecture using an energy harvester and supercapacitor.

Supercapacitors, which can deliver high power due to their low ESR, have high C to supply sufficient energy to support the data capture and transmission for its duration, have “unlimited” cycle life, and can be charged at very low current are the perfect power buffer between the energy harvester and sensor. Factors to consider when selecting your supercapacitor include:

  1. How much energy is required to support the data collection and transmission?
  2. What is the peak transmit power?
  3. Factors 1 and 2 together will determine the minimum capacitance and maximum Equivalent Series Resistance (ESR) for the supercapacitor. Many engineers select C = 2E/(V2init – V2final), where E is the energy required for the transmit pulse and Vinit and Vfinal are the initial and final voltages of the supercapacitor. However, this calculation has implicitly assumed that supercapacitor ESR = 0. The supercapacitor voltage drop will be ILOAD x ESR + ILOAD x Duration/C where Duration is the duration of the load pulse. This formula is accurate for the simple case of constant current during data capture and transmission. In practice, more accurate modelling may be necessary.
  4. What is the leakage current? This must be << charging current provided by the energy harvester and charging IC.
  5. How much space do you have? Many applications, such as building sensors, wearables, require a slim, unobtrusive and elegant form-factor. In these cases, CAP-XX’s thin prismatic supercapacitor range meets the need. Where space is not constrained, lower cost CAP-XX cans can be used.
  6. At what voltage does the sensor and transmitter operate? If it is less than 3V then you can use a single cell supercapacitor. CAP-XX will soon release 3V prismatic cells, 3V cans are currently available. If a higher voltage is required, then use a dual cell supercapacitor module for up to 5.5V. CAP-XX prismatic dual cell modules have the 2 cells matched by capacitance so they have roughly equal voltages when charged. A low current active balance circuit is required to maintain cell balance.

A range of ICs have been released to charge supercapacitors from energy harvesters. In selecting your IC you should consider the characteristics of your energy harvesting transducer (solar, micro-generator, piezo-electric, RF or thermal), the minimum voltage the IC requires to start, if the IC has peak power tracking and the method it uses, min and max power levels and efficiency at those levels.

An ecosystem has developed, comprising of energy harvesters, charging ICs and supercapacitors to enable energy from the environment to “indefinitely” power wireless sensors in a wide variety of applications.

featured image credit: CapXX

 

Related

Recent Posts

European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

30.7.2025
4

Würth Elektronik Expands MagI³C with Variable Step-Down Modules

30.7.2025
10

Switched Capacitor Converter Explained

28.7.2025
12

Samsung Releases 1000V 1812 X7R 100nF MLCC for Electric Vehicles

28.7.2025
16

Samsung Electro-Mechanics Releases Molded MLCC Capacitors

28.7.2025
22

Researchers Demonstrated 200C Polymer Film Dielectric

28.7.2025
10

Researchers Demonstrated Zinc-Ion Based Photo-Supercapacitor

28.7.2025
9
Comparative display of a grain size and domain structure; b free energy; c P-E loops after high-entropy ceramics (HECs) and PGS design. source: Nature Communications  ISSN 2041-1723

Researchers Propose Novel MLCC Dielectric Design to Increase Energy Storage Capacity

24.7.2025
38

Samsung Electro-Mechanics Focuses MLCCs on AI servers and Automotive

22.7.2025
56

Modelithics Library Expands with 120 New Models

22.7.2025
4

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version