Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Extends SMT Gate Drive Transformers to 1000 V

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

    Connector Industry Achieves Double-Digit Growth

    Stackpole Unveils Metal Element High Current Chip Jumpers

    Common Mistakes in Flyback Transformer Specs

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Extends SMT Gate Drive Transformers to 1000 V

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

    Connector Industry Achieves Double-Digit Growth

    Stackpole Unveils Metal Element High Current Chip Jumpers

    Common Mistakes in Flyback Transformer Specs

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Supercaps Power Wireless Sensors

23.5.2018
Reading Time: 5 mins read
A A

source: Sensors mag article

Wireless sensor applications usually have a low duty cycle with a high peak power requirement to periodically or sporadically gather and transmit data drawing very low average power. This makes them ideal to be powered from an energy harvester coupled with a supercapacitor.

RelatedPosts

TDK Extends SMT Gate Drive Transformers to 1000 V

Non-Linear MLCC Class II Capacitor Measurements Challenges

Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

Wireless sensors are becoming ubiquitous. They are used in applications ranging from HVAC, industrial control, condition monitoring, security monitoring, and location tracking. Providing power to these sensors can be a problem – it is too expensive to wire power to them, and batteries require replacement and disposal. The environment on the other hand, can provide effectively infinite energy but at very low power. These sensor applications usually have a low duty cycle with a high peak power requirement to periodically or sporadically gather and transmit data drawing very low average power. This makes them ideal to be powered from an energy harvester coupled with a supercapacitor. The energy harvester supplies a power management IC which charges the supercapacitor at very low power, and the supercapacitor provides the peak power burst for the sensor to collect and transmit data. Some typical applications include:

  • Sensors reporting over the cloud in the Internet of things.
  • Solar cells to power sensors reporting temperature & humidity for HVAC, light levels to control lighting, movement detectors to determine if lights should be switched off / on.
  • Vibration transducers (micro-generator or piezo-electric) to power sensors reporting vibration spectra for condition monitoring of rotating machines, for condition monitoring and location tracking of railway rolling stock, location tracking of containers, monitoring stress in structures such as bridges and dams, monitoring vibration and stress in airframes.
  • RF for rapid wireless charging of a supercapacitor that then enables encrypted card transactions, monitoring reporting user data in wearables.

 

Figure 1 shows the typical power architecture using an energy harvester and supercapacitor.

Supercapacitors, which can deliver high power due to their low ESR, have high C to supply sufficient energy to support the data capture and transmission for its duration, have “unlimited” cycle life, and can be charged at very low current are the perfect power buffer between the energy harvester and sensor. Factors to consider when selecting your supercapacitor include:

  1. How much energy is required to support the data collection and transmission?
  2. What is the peak transmit power?
  3. Factors 1 and 2 together will determine the minimum capacitance and maximum Equivalent Series Resistance (ESR) for the supercapacitor. Many engineers select C = 2E/(V2init – V2final), where E is the energy required for the transmit pulse and Vinit and Vfinal are the initial and final voltages of the supercapacitor. However, this calculation has implicitly assumed that supercapacitor ESR = 0. The supercapacitor voltage drop will be ILOAD x ESR + ILOAD x Duration/C where Duration is the duration of the load pulse. This formula is accurate for the simple case of constant current during data capture and transmission. In practice, more accurate modelling may be necessary.
  4. What is the leakage current? This must be << charging current provided by the energy harvester and charging IC.
  5. How much space do you have? Many applications, such as building sensors, wearables, require a slim, unobtrusive and elegant form-factor. In these cases, CAP-XX’s thin prismatic supercapacitor range meets the need. Where space is not constrained, lower cost CAP-XX cans can be used.
  6. At what voltage does the sensor and transmitter operate? If it is less than 3V then you can use a single cell supercapacitor. CAP-XX will soon release 3V prismatic cells, 3V cans are currently available. If a higher voltage is required, then use a dual cell supercapacitor module for up to 5.5V. CAP-XX prismatic dual cell modules have the 2 cells matched by capacitance so they have roughly equal voltages when charged. A low current active balance circuit is required to maintain cell balance.

A range of ICs have been released to charge supercapacitors from energy harvesters. In selecting your IC you should consider the characteristics of your energy harvesting transducer (solar, micro-generator, piezo-electric, RF or thermal), the minimum voltage the IC requires to start, if the IC has peak power tracking and the method it uses, min and max power levels and efficiency at those levels.

An ecosystem has developed, comprising of energy harvesters, charging ICs and supercapacitors to enable energy from the environment to “indefinitely” power wireless sensors in a wide variety of applications.

featured image credit: CapXX

 

Related

Recent Posts

Non-Linear MLCC Class II Capacitor Measurements Challenges

19.8.2025
14

Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

19.8.2025
8

High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

12.8.2025
115

Radiation Tolerance of Tantalum and Ceramic Capacitors

8.8.2025
72

TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

7.8.2025
33

Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

6.8.2025
56

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

6.8.2025
43

How to Calculate the Output Capacitor for a Switching Power Supply

6.8.2025
50

Evaluation and Modeling of Supercapacitors for Reliability of Lifetime Predictions

4.8.2025
35

Researchers Presents High-Performance Carbon-Based Supercapacitors

1.8.2025
31

Upcoming Events

Aug 27
17:00 - 18:00 CEST

Capacitor Assemblies for High-Power Circuit Designs

Sep 3
15:30 - 17:30 CEST

How to Choose Your Magnetic Supplier

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version