Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    SCHURTER Releases Coin Cell Supercapacitors for Backup Power

    Skeleton Technologies Expands in U.S. to Power AI Data Centers

    TDK Releases Stackable µPOL 25A Power Modules

    Wk 6 Electronics Supply Chain Digest

    Smoltek CNF-MIM Capacitors Hit 1,000x Lower Leakage

    DigiKey Expands Line Card with 108K Stock Parts and 364 Suppliers

    Würth Elektronik Announces Partner Program

    Vishay Releases Compact 0806 Low‑DCR Power Inductor

    Murata Opens New Ceramic Capacitor Manufacturing and R&D Center in Japan

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    SCHURTER Releases Coin Cell Supercapacitors for Backup Power

    Skeleton Technologies Expands in U.S. to Power AI Data Centers

    TDK Releases Stackable µPOL 25A Power Modules

    Wk 6 Electronics Supply Chain Digest

    Smoltek CNF-MIM Capacitors Hit 1,000x Lower Leakage

    DigiKey Expands Line Card with 108K Stock Parts and 364 Suppliers

    Würth Elektronik Announces Partner Program

    Vishay Releases Compact 0806 Low‑DCR Power Inductor

    Murata Opens New Ceramic Capacitor Manufacturing and R&D Center in Japan

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

U.S. Department of Defense Fund Project for Advance Adoption of Lead-Free Electronics

17.2.2021
Reading Time: 3 mins read
A A

A new consortium funded by an award from the U.S. Department of Defense has selected Purdue University to co-lead its first project aimed at advancing the adoption of lead-free electronics in defense systems.

The Defense Electronics Consortium (DEC), to be established and managed by the U.S. Partnership for Assured Electronics (USPAE), is designed to address the defense risks created by the contraction of the U.S. electronics manufacturing sector over the last 20 years.

RelatedPosts

SCHURTER Releases Coin Cell Supercapacitors for Backup Power

Skeleton Technologies Expands in U.S. to Power AI Data Centers

TDK Releases Stackable µPOL 25A Power Modules

Purdue, the University of Maryland and Auburn University will lead the consortium’s Lead-Free Defense Electronics Project, which has received $40 million to be distributed over a period of five to seven years. Of the $3.9 million in funds for the first year of the project, approximately $1 million has been awarded to researchers at Purdue’s West Lafayette and Northwest campuses.

The project’s goal is to foster research and action to accelerate the transition to lead-free electronics in aerospace, defense and other high-performance electronics. Consumer and automotive electronics have been transitioning to lead-free technologies since 2006 when the European Union banned the sale of lead-containing electronics. Japan, India and China followed suit with similar bans.

“As a result of this worldwide transition, all advanced electronics are lead-free and have evolved to be used in increasingly demanding environments,” said Carol Handwerker, Purdue’s Reinhardt Schuhmann Jr. Professor of Materials Engineering and a principal investigator for the Lead-Free Defense Electronics Project.

Due to concerns about reliability, defense and aerospace companies have continued to use lead-containing electronics, lagging behind commercial sectors that have made lead-free technological advancements in compliance with lead bans. The extra manufacturing steps needed to convert these commercial electronics into leaded electronic assemblies required for defense systems costs the DoD tens of millions of dollars a year, the Pb-Free Electronics Risk Management Council estimates.

The uncertainty in how lead-free electronics perform in defense systems has limited the use of advanced electronics with improved system performance, reliability and security.

“The aim of this project is to close the gaps – quantifying the conditions where advanced lead-free electronics can and cannot be used in defense systems and guiding their implementation,” Handwerker said.

Defense electronics sales are dwarfed by consumer and industrial electronics, leading to supply-chain issues for lead-containing products that could be eliminated by the move to lead-free. The U.S. share of global production of printed circuit boards shrank from about 30% in the 1990s to less than 5% today. U.S. government reports in 2005 and 2018 warned that the trend could imperil the nation’s ability to quickly field reliable, cutting-edge defense electronics.

The COVID-19 pandemic also shined a light on the extent to which the U.S. had outsourced the manufacturing of vitally needed medical equipment with electronic components. As noted in a DoD 2021 Industrial Capabilities report to Congress, defense weapons systems and critical infrastructure could face similar supply-chain challenges if nothing is done to change course.

“This consortium will give the DoD deeper insights into the electronics industry, including how the industry supports defense missions,” said retired Rear Adm. Kevin M. Sweeney, former Pentagon chief of staff and USPAE board member. “The DEC will facilitate interactions between the DoD and the electronics industry, providing a stronger voice and greater opportunities for companies that are often buried several layers deep in the supply chain.” 

The new consortium provides a vehicle for the DoD to contract with trusted partners in industry and academia, including small and medium-size innovators that typically do not do business with DoD. Purdue will be involved not only in co-leading the DEC Lead-Free Defense Electronics Project but also in identifying new opportunities for DEC to form industry-university-government teams to address high-priority defense needs.

Through a variety of programs such as conferences, networking events, white papers and collaboration projects, the DEC will tackle numerous defense electronics challenges and innovations. Participants may include companies that make printed circuit boards, microelectronics, cable harnesses, and connectors and other components, along with companies that assemble electronic systems and those that provide materials and equipment for manufacture and assembly.

Related

Source: Purdue University

Recent Posts

Skeleton Technologies Expands in U.S. to Power AI Data Centers

9.2.2026
11

DigiKey Expands Line Card with 108K Stock Parts and 364 Suppliers

6.2.2026
15

Würth Elektronik Announces Partner Program

6.2.2026
18

Murata Opens New Ceramic Capacitor Manufacturing and R&D Center in Japan

5.2.2026
72

Mechanical Drift Indicator of Tantalum Capacitor Anodes Degradation under Reverse Bias

3.2.2026
40

Top 10 Connector Vendors by Product Type

29.1.2026
76

CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

28.1.2026
52

ESA Call for Papers 6th Space Passive Component Days – SPCD 2026

28.1.2026
50

Component Distribution Supply Chain January 2026

28.1.2026
82

Upcoming Events

Feb 11
16:00 - 17:00 CET

What’s Next in Power Electronics Design

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

Mar 3
16:00 - 17:00 CET

Cybersecurity at the Eleventh Hour – from RED to CRA – Information and Discussion

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version