• Home
  • ABC of CLR
  • PCNS
  • Privacy Policy
  • Support Us
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • Newsby Category
    • All
    • Aerospace & Defence
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Product Release
    • New Technologies
    • Non-linear Passives
    • Resistors
    • RF & Microwave
    • Telecommunication
    ESD Basics and Safety Measures

    ESD Basics and Safety Measures

    Introducing AVX SuperCapacitor Technology

    Introducing AVX SuperCapacitor Technology

    Skeleton Releases UL-Certified Ultracapacitors Launched for Warehouse Robotics and Smart Factories

    Skeleton Releases UL-Certified Ultracapacitors Launched for Warehouse Robotics and Smart Factories

    Acquisition Strategies in the Passive Components Industry

    Acquisition Strategies in the Passive Components Industry

    Passive Components Blog Add Filterable Video Channel Resource

    Passive Components Blog Add Filterable Video Channel Resource

    EMC Ferrites Explained at Würth Elektronik Webinar

    EMC Ferrites Explained at Würth Elektronik Webinar

    Vishay Inductors Offer High Operating Temperatures to +155 °C in Compact 1212 Case Size

    Vishay Inductors Offer High Operating Temperatures to +155 °C in Compact 1212 Case Size

    Cornell Dubilier Expands Capabilities in High Current AC Harmonic Filter Capacitors

    Cornell Dubilier Expands Capabilities in High Current AC Harmonic Filter Capacitors

    Murata Develops the World’s First 0.1uF Multilayer Ceramic Capacitor in 008004 size

    Murata Develops the World’s First 0.1uF Multilayer Ceramic Capacitor in 008004 size

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
  • Video ChannelFilterable
    • All
    • Capacitor videos
    • Filter videos
    • Inductor videos
    • Resistor videos
    ESD Basics and Safety Measures

    ESD Basics and Safety Measures

    Introducing AVX SuperCapacitor Technology

    Introducing AVX SuperCapacitor Technology

    EMC Ferrites Explained at Würth Elektronik Webinar

    EMC Ferrites Explained at Würth Elektronik Webinar

    Solid Aluminum Polymer Capacitor Digital Data Sheet

    Solid Aluminum Polymer Capacitor Digital Data Sheet

    Coilcraft Magnetic Minutes – Inductors Selection for LEDs

    Coilcraft Magnetic Minutes – Inductors Selection for LEDs

    Influence of a Common Mode Choke to the Noise on the Data Line Explained

    Influence of a Common Mode Choke to the Noise on the Data Line Explained

    Introducing Capacitor Solutions for Space Constrained Mains Powered Applications

    Introducing Capacitor Solutions for Space Constrained Mains Powered Applications

    Ceramic Safety SMD Capacitor Digital Datasheet

    Ceramic Safety SMD Capacitor Digital Datasheet

    Metal Composite Inductor vs Other Construction Types

    Metal Composite Inductor vs Other Construction Types

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Home
  • Newsby Category
    • All
    • Aerospace & Defence
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Product Release
    • New Technologies
    • Non-linear Passives
    • Resistors
    • RF & Microwave
    • Telecommunication
    ESD Basics and Safety Measures

    ESD Basics and Safety Measures

    Introducing AVX SuperCapacitor Technology

    Introducing AVX SuperCapacitor Technology

    Skeleton Releases UL-Certified Ultracapacitors Launched for Warehouse Robotics and Smart Factories

    Skeleton Releases UL-Certified Ultracapacitors Launched for Warehouse Robotics and Smart Factories

    Acquisition Strategies in the Passive Components Industry

    Acquisition Strategies in the Passive Components Industry

    Passive Components Blog Add Filterable Video Channel Resource

    Passive Components Blog Add Filterable Video Channel Resource

    EMC Ferrites Explained at Würth Elektronik Webinar

    EMC Ferrites Explained at Würth Elektronik Webinar

    Vishay Inductors Offer High Operating Temperatures to +155 °C in Compact 1212 Case Size

    Vishay Inductors Offer High Operating Temperatures to +155 °C in Compact 1212 Case Size

    Cornell Dubilier Expands Capabilities in High Current AC Harmonic Filter Capacitors

    Cornell Dubilier Expands Capabilities in High Current AC Harmonic Filter Capacitors

    Murata Develops the World’s First 0.1uF Multilayer Ceramic Capacitor in 008004 size

    Murata Develops the World’s First 0.1uF Multilayer Ceramic Capacitor in 008004 size

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
  • Video ChannelFilterable
    • All
    • Capacitor videos
    • Filter videos
    • Inductor videos
    • Resistor videos
    ESD Basics and Safety Measures

    ESD Basics and Safety Measures

    Introducing AVX SuperCapacitor Technology

    Introducing AVX SuperCapacitor Technology

    EMC Ferrites Explained at Würth Elektronik Webinar

    EMC Ferrites Explained at Würth Elektronik Webinar

    Solid Aluminum Polymer Capacitor Digital Data Sheet

    Solid Aluminum Polymer Capacitor Digital Data Sheet

    Coilcraft Magnetic Minutes – Inductors Selection for LEDs

    Coilcraft Magnetic Minutes – Inductors Selection for LEDs

    Influence of a Common Mode Choke to the Noise on the Data Line Explained

    Influence of a Common Mode Choke to the Noise on the Data Line Explained

    Introducing Capacitor Solutions for Space Constrained Mains Powered Applications

    Introducing Capacitor Solutions for Space Constrained Mains Powered Applications

    Ceramic Safety SMD Capacitor Digital Datasheet

    Ceramic Safety SMD Capacitor Digital Datasheet

    Metal Composite Inductor vs Other Construction Types

    Metal Composite Inductor vs Other Construction Types

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
No Result
View All Result
Passive Components Blog
No Result
View All Result

Leakage current characteristics of capacitors

27.11.2019
4 min read
0 0
Leakage current characteristics of capacitors
0
SHARES
926
VIEWS

source: Capacitor Faks blog

Capacitors, just like other electronic components, are constructed with imperfect materials. The imperfections and defects in these materials have significant effects on the electrical performance of capacitors.  Some of the parameters determined by these defects and imperfections include impedance, dissipation factor, inductive reactance, equivalent series resistance, and leakage current. When designing an electronic circuit, it is necessary to consider these characteristics.

DC leakage current is one of the key characteristics to consider when selecting a capacitor for your design. Other important parameters include working voltage, nominal capacitance, polarization, tolerance, and working temperature.

Leakage current and its effects on the performance of capacitors

The conductive plates of a capacitor are separated by a dielectric material. This material does not provide perfect insulation, and allows current to leak through it. The DC leakage current refers to this small current that flows through a capacitor when voltage is applied. The value of this current mainly depends on applied voltage, capacitor temperature, and charging period.

The amount of leakage current varies from one type of capacitor to another, depending on the characteristics of the dielectric material and construction. Aluminium electrolytic capacitors have a large leakage current while ceramic, foil, and plastic film capacitors have small leakage currents. A very small leakage current is commonly referred to as “insulation resistance”.

In electronic circuits, capacitors are used for a wide range of applications including decoupling, filtering, and coupling applications. Some applications such as power supply systems and amplifier coupling systems demand capacitors with low leakage currents. Aluminium electrolytic capacitors and tantalum capacitors have high leakage currents and are generally unsuitable for such applications. Plastic and ceramic capacitors have lower leakage currents, and are commonly used for coupling and storage applications.

Dependence of leakage current on time

The leakage currents of some capacitors are dependent on time. At the instant the voltage is applied to an aluminium electrolytic capacitor, the current is at its peak. The occurrence of this peak current depends on the forming characteristics of a capacitor and the internal resistance of the source of voltage. When a capacitor is charged, its leakage current drops with time to a nearly constant value called operational leakage current. This small leakage current is dependent on both temperature and applied voltage.

Aluminium electrolytic capacitors have self-healing properties. The self-healing process has a significant effect on the leakage currents of aluminium electrolytic capacitors. Time dependence of leakage currents is also caused by forming of the dielectric material. Other parameters that determine the value of this small current include the type of electrolyte, capacitance, and forming voltage of the anode. The leakage current of a ceramic capacitor does not change with time.

Dependence of leakage current on temperature

The leakage current of a capacitor is dependent on temperature. The level of dependency varies from one type of capacitors to another. For aluminium electrolytic capacitor, an increase in temperature speeds up the rate of chemical reaction. This results in an increase in leakage current.

Compared to ceramic capacitors, tantalum capacitors have high leakage currents. The DC leakage current of a tantalum capacitor increases with an increase in temperature.  The leakage currents of tantalum capacitors increase slightly when they are stored in a high temperature environment. This small increase in leakage current is temporary, and it is reversed by applying rated voltage for a few minutes. In addition, the leakage current of a tantalum capacitor increases slightly when the component is exposed to high humidity. Voltage conditioning helps to reverse this temporary increase in leakage current.

Ceramic and film capacitors have small leakage currents relative to electrolytic capacitors. For multilayer ceramic capacitors (MLCCs), the intrinsic leakage currents increase exponentially with an increase in temperature. The insulation resistance of a film capacitor is determined by the properties of the dielectric material. For this type of capacitor, an increase in temperature causes a decrease in insulation resistance and an increase in leakage current.

Dependence of leakage current on voltage

The DC leakage current of a capacitor is greatly dependent on the applied voltage. For aluminium electrolytic capacitors, this current increases with an increase in operating voltage. As the operating voltage exceeds the rated voltage and approaches the forming voltage, the leakage current increases exponentially. When the voltage applied to an aluminium electrolytic capacitor exceeds the surge voltage, the tendency towards temperature rise, electrolyte degradation, formation of excess gas, and other secondary reactions increases. Due to this reason, operating an aluminium electrolytic capacitor beyond the rated voltage is not tolerable. The DC leakage current of an aluminium electrolytic capacitor drops sharply when the applied voltage is decreased below the rated voltage.

The leakage current of an aluminium electrolytic capacitor increases when the component is stored for a long period of time. Such capacitors are restored to original characteristics through reconditioning. The process involves applying rated voltage to the capacitor for about half an hour.

For ceramic capacitors, the intrinsic leakage currents are greatly dependent on voltage. An increase in voltage results in a superlinear increase in intrinsic leakage current. The insulation resistance of a ceramic capacitor is independent of voltage.

Conclusion

The materials used in the manufacturing of electronic components have imperfections. These imperfections have a significant effect on the electrical characteristics of electronic components. The dielectric material of a capacitor is an imperfect insulator that allows a small amount of current to flow between the two conductive plates. In aluminium electrolytic capacitors, leakage current is primarily caused by imperfections in the oxide layer. This current varies mainly depending on the applied voltage, time, and capacitor temperature. Electrolytic capacitors have large leakage currents while plastic and ceramic capacitors have very small leakage currents. Low leakage current capacitors are widely used in coupling and storage applications.

 

Previous Post

Coilcraft Power inductors with specialised terminations

Next Post

When benign is better: fail safe capacitor technology

Related Posts

ESD Basics and Safety Measures
Applications

ESD Basics and Safety Measures

6.12.2019
5
Introducing AVX SuperCapacitor Technology
Capacitor videos

Introducing AVX SuperCapacitor Technology

6.12.2019
6
Skeleton Releases UL-Certified Ultracapacitors Launched for Warehouse Robotics and Smart Factories
Automotive

Skeleton Releases UL-Certified Ultracapacitors Launched for Warehouse Robotics and Smart Factories

6.12.2019
4
Next Post
When benign is better: fail safe capacitor technology

When benign is better: fail safe capacitor technology

Cornell Dubilier’s Very Low-Profile Aluminum Electrolytic Capacitor Breaks Energy Density Barriers

Cornell Dubilier's Very Low-Profile Aluminum Electrolytic Capacitor Breaks Energy Density Barriers

Vishay Extends Temperature Range of HOTcap®Leaded Automotive Grade MLCCs to an Industry-High +200 °C

Vishay Extends Temperature Range of HOTcap®Leaded Automotive Grade MLCCs to an Industry-High +200 °C

Newsletter

Get Latest News Straight Into Your email !
Weekly or Monthly Newsletter of Your Choice:

SUBSCRIBE

Popular News

  • What is a Dielectric Constant of Plastic Materials ?

    What is a Dielectric Constant of Plastic Materials ?

    3 shares
    Share 3 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    21 shares
    Share 17 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    4 shares
    Share 3 Tweet 0
  • Leakage current characteristics of capacitors

    0 shares
    Share 0 Tweet 0
  • The Basics & Benefits of Tantalum & Ceramic Capacitors

    1 shares
    Share 0 Tweet 0

Support Us

We do not like disturbing pop-ups and advertisements.
Is this site useful ? You can support us here:

SUPPORT US

Passive Components Blog

© 2019 EPCI - Premium Passive Components Educational and Information Site

Navigate Site

  • Home
  • ABC of CLR
  • PCNS
  • Privacy Policy
  • Support Us
  • About

Follow Us

No Result
View All Result
  • Home
  • News

© 2019 EPCI - Premium Passive Components Educational and Information Site

Login to your account below

Forgotten Password?

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.